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ABSTRACT

We show that if K is a compact metric space then C(K) is a 2-absolute

Lipschitz retract. We then study the best Lipschitz extension constants

for maps into C(K) from a given metric space M , extending recent re-

sults of Lancien and Randrianantoanina. They showed that a finite-

dimensional normed space which is polyhedral has the isometric exten-

sion property for C(K)-spaces; here we show that the same result holds

for spaces with Gateaux smooth norm or of dimension two; a three-

dimensional counterexample is also given. We also show that X is poly-

hedral if and only if every subset E of X has the universal isometric

extension property for C(K)-spaces. We also answer a question of Naor

on the extension of Hölder continuous maps.

1. Introduction

Lipschitz extension of maps into C(K)-spaces have been studied by a number

of authors. The first results in this field are due to Lindenstrauss [10]. Linden-

strauss showed that if K is a compact metric space, then C(K) is an absolute

Lipschitz retract. This implies that for a suitable constant λ if M is a metric

space and E is a closed subset of M then every Lipschitz map F0: E → C(K) has

an extension F : M → C(K) with Lipschitz constant Lip(F ) ≤ λLip(F0). Lin-

denstrauss’s technique gave an estimate of λ ≤ 20. However c0 is a 2-absolute

Lipschitz retract, so that the corresponding result for c0 works with constant 2.

Note that, for K nonmetrizable one gets a similar extension result when E is

separable. See the recent book of Benyamini and Lindenstrauss [1].
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Recently Lancien and Randrianantoanina [9] considered a related problem.

They asked for conditions on M which guarantee extensions with λ = 1 (iso-

metric case) or λ = 1+ ǫ (almost isometric case). They restricted M = X to be

a finite-dimensional normed space and showed that for the c0-case one always

has isometric extensions. However, for the C(K)-case they showed that only

(1 + ǫ)-extensions are obtained in general and gave a four-dimensional coun-

terexample to the isometric version. They showed, however, that for polyhedral

spaces one always has an isometric extension.

Our first result in this paper improves Lindenstrauss’s 1964 estimate by show-

ing that C(K) is a 2-absolute retract for every compact metric space K.

We then develop necessary and sufficient conditions on a subset E of a metric

space M for the existence of Lipschitz extensions of maps into c0 or C(K) with

prescribed Lipschitz constant (Theorems 4.1 and 4.2). These conditions permit

us to determine the best constant for extensions, in principle. They also reveal

a phenomenon already observed in [9]; that one can reduce to the case when

K is the one point compactification of N (i.e. C(K) = c). We then apply these

conditions to the problems considered by Lancien and Randrianantoanina.

Let us introduce some definitions. We say that (E,M) has the C-IEP (C-

isometric extension property) if for every Lipshitz map F0: E → C(K) (K

compact metric) there is an extension F : M → C(K) with Lip(F ) = Lip(F0).

We say that M has the C-IEP if (E,M) has the C-IEP for every subset E of

M and the C-UIEP (universal isometric extension property) if (M,M ′)

has the C-IEP, whenever M ⊂M ′.

Lancien and Randrianantoanina [9] showed that a finite-dimensional normed

space X which is polyhedral has the C-IEP; we give a different argument for this

result and we extend it to show it also has the C-UIEP (and hence so does every

subset). We then show that X is polyhedral if and only if it has the C-UIEP and

the C-IEP. To establish this we introduce a natural property for metric spaces

which implies both C-UIEP and C-IEP. We say that a metric space M has the

collinearity property of given ǫ > 0 and an infinite subset A of M there are

three points x1, x2, x3 ∈ A such that

d(x1, x3) > d(x1, x2) + d(x2, x3) − ǫ.

For finite-dimensional normed spaces this property is equivalent to being poly-

hedral.

We then show that there are many other examples of finite-dimensional

normed spaces with the C-IEP, including any space with a Gateaux smooth
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norm. We also show that any 2-dimensional space has the C-IEP, and show

that a result of Lindenstrauss [11] implies the existence of a 3-dimensional space

failing C-IEP.

We conclude by considering Hölder extensions and give an example which

answers a question of Naor [14]. This is an example of a metric space M with

the C-IEP but such that if 0 < α < 1 the space Mα = (M,dα) fails the C-IEP.

This means that isometric extensions are always possible for Lipschitz maps but

not for Hölder continuous maps.

2. Preliminaries

Let (M,d) be a metric space. A subset A of M is called metrically bounded

if for some (and hence for every) x ∈ M we have supa∈A d(a, x) < ∞. We will

say that M has the Heine-Borel property if every metrically bounded subset

is precompact (or totally bounded); this is equivalent to requiring that every

metrically bounded sequence has a Cauchy subsequence. If M is complete it

implies that M is locally compact but the converse is false.

Suppose (Y, d1) is another metric space and F : M → Y is a Lipschitz map

we denote by Lip(F ) the Lipschitz constant of F , i.e., the least constant λ such

that

d1(F (x1), F (x2)) ≤ λd(x1, x2) x1, x2 ∈M.

Suppose A ⊂ M . We say that the pair (A,M) has the Lipschitz

(λ, Y )-extension property (Lipschitz (λ, Y )-EP) if for every Lipschitz map

F0: A → Y there is a Lipschitz extension F : M → Y with Lip(F ) ≤ λLip(F0).

In particular we say (A,M) has the Lipschitz isometric Y -extension prop-

erty (Lipschitz Y -IEP) if it has the (1, Y )-EP, and the Lipschitz almost

isometric Y -extension property (Lipschitz Y -AIEP) if it has the (λ, Y )-

EP for every λ > 1.

We also say that M has the Lipschitz (λ, Y )-extension property (Lips-

chitz (λ, Y )-EP) [respectively, Lipschitz isometric Y -extension property,

(Y -IEP); respectively Lipschitz almost isometric Y -extension property

(Lipschitz Y -AIEP)] if for for every subset A of M the pair (A,M) has the

Lipschitz (λ, Y )-EP [respectively, Lipschitz Y -IEP; respectively, Lipschitz Y -

AIEP]. We will be especially interested in the cases when Y is the Banach space

c0 or C(K) where K is a compact metric space.

Similarly we will say that M has the Lipschitz universal (λ, Y )-extension

property (Lipschitz (λ, Y )-UEP) if whenever M is embedded in a metric

space M ′ then the pair (M,M ′) has the Lipschitz (λ, Y )-EP. We similarly define
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the Lipschitz universal isometric and Lipschitz almost isometric Y -extension

properties (Lipschitz Y -UIEP and Lipschitz Y -UAIEP).

It is sometimes natural to consider combinations of these properties. We will

need the following

Proposition 2.1: Suppose M,Y are metric spaces and λ ≥ 1. The following

are equivalent:

(i) M has the Lipschitz (λ, Y )-EP and the Lipschitz (λ, Y )-UEP.

(ii) Every subset of M has the Lipschitz (λ, Y )-UEP.

Proof: (ii) ⇒ (i) is obvious. For (i)⇒ (ii) we observe that it suffices to argue

that if E is a subset of M and E is simultaneously isometrically embedded in

some other metric space (M ′, d′), we can form a pseudo-metric on M ∪M ′ by

defining

d(x, x′) = inf{d(x, e) + d′(e, x′) : e ∈ E} x ∈M \ E, x′ ∈M ′ \ E.

If (ii) holds it follows that we can extend any Lipschitz map F0: E → Y to

F : M ∪M ′ → Y with Lip(F ) ≤ λLip(F0) and then restrict it to M ′.

A is called a λ-Lipschitz retract of M if (A,M) has the (λ, Y )-extension

property for every choice of Y . This is equivalent to the requirement that there

is a Lipschitz retract r: M → A with Lip(r) ≤ λ. (r is a retract if r(a) = a

for a ∈ A.) Y is called a λ-absolute Lipschitz retract if every pair (A,M)

has the (λ, Y )-EP. It is well-known that R is a 1-absolute Lipschitz retract and

hence that every (real) Banach space ℓ∞(S) is a 1-absolute Lipschitz retract. In

contrast to the linear theory it is however true that c0 is a 2-absolute Lipschitz

retract ([10], [1]). It is also known that any C(K)-space with K compact metric

is a 20-absolute Lipschitz retract ([10], [1]). We will improve this estimate

shortly.

Now suppose X,Y are Banach spaces and E is a closed subspace of X . We

say that (E,X) has the linear (λ, Y )-extension property (linear (λ, Y )-

EP) if for every bounded linear operator T0: E → Y there is a bounded linear

extension T : X → Y with ‖T ‖ ≤ λ‖T0‖. We would like to take the opportunity

to relate the linear and nonlinear theories by the following simple Lemma:

Lemma 2.2: Suppose X and Y are Banach spaces and suppose E is a closed

subspace ofX of co-dimension one. Suppose (E,X) has the Lipschitz (λ, Y )-EP.

Then (E,X) has the linear (λ, Y )-EP.

Proof: Suppose T0: E → Y is a bounded linear operator. Then there is a

Lipschitz extension F : X → Y with Lip(F ) ≤ λ‖T0‖. Pick any x0 ∈ X \E and
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extend T0 to a linear map T : X → Y such that Tx0 = F (x0). Then for any

e ∈ E

‖T (e+ x0)‖ = ‖F (x0) − F (−e)‖ ≤ λ‖T0‖‖x0 + e‖

and it follows trivially that ‖T ‖ ≤ λ‖T0‖.

Finally let us note that if M = (M,d) is a metric space, then Mα denotes

the metric space (M,dα) for 0 < α < 1. If Mj = (Mj , dj) for j = 1, 2, . . . , n are

metric spaces then (
∑n

j=1Mj)ℓ1 = M1 ⊕1 · · · ⊕1 Mn denotes the metric space

M1 × · · · ×Mn with the metric

d((xj)
n
j=1, (yj)

n
j=1) =

n
∑

j=1

dj(xj , yj)

and (
∑n

j=1Mj)ℓ∞ = M1⊕∞ · · ·⊕∞Mn denotes the metric space M1×· · ·×Mn

with the metric

d((xj)
n
j=1, (yj)

n
j=1) = max

1≤j≤n
dj(xj , yj).

3. C(K)-extensions

We first state a simple well-known consequence of the classical Miljutin Lemma.

We denote by ∆ the Cantor set {−1,+1}N.

Proposition 3.1: Let K be any compact metric space. Then there exist pos-

itive contractive operators S: C(K) → C(∆) and R: C(∆) → C(K) such that

R1 = 1, S1 = 1 and RS = IC(K).

Proof: K can be embedded into the Hilbert cube [0, 1]N. Let ϕ: K → [0, 1]N

be such an embedding. A theorem of Borsuk [2] implies that there is a positive

contractive operator A: C(K) → C([0, 1]N) with A1 = 1 and such that (Af)◦ϕ =

f . On the other hand, Miljutin [13] shows that there is a continuous surjection

π: ∆ → [0, 1]N and a positive contractive operator B: C(∆) → C([0, 1]N) so that

B(f ◦ π) = f . Now define Sf = (Af) ◦ π and Rf = (Bf) ◦ ϕ.

Let K be a compact Hausdorff space. We let ℓ∞(K) be the metric space of

all bounded functions on K with the usual sup norm. Let U(K) and L(K) be

respectively the subsets of ℓ∞(K) of all upper-semi-continuous functions and of

all lower-semi-continuous functions. Thus, C(K) = U(K) ∩ L(K).

Now let us specialize to the case of the Cantor set. We define S(∆) to be

the subset of U(∆) ⊕∞ L(∆) consisting of all pairs (u, v) such that u ≤ v. Let
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diagS(∆) = {(f, f) : f ∈ C(∆)} to be the canonical image of C(∆) in S(∆). We

also define a partial order on S(∆) by (u1, v1) � (u2, v2) if u1 ≥ u2 and v1 ≤ v2.

Theorem 3.2: There is a 1-Lipschitz retract θ: S(∆) → diagS(∆) such that

θ(u, v) � (u, v) for all (u, v) ∈ S(∆).

Proof: Let Vm be the family of 2m clopen sets of the form

∆ǫ1,...,ǫm
= {s = (sk)∞k=1 : sj = ǫj, 1 ≤ j ≤ m}.

Let Cm(∆) be the subset of C(∆) of all functions constant on each set A ∈ Vm;

this set is isometric to ℓ2
m

∞ . For each h ∈ ℓ∞(K) define

αmh =
∑

A∈Vm

(inf
A
h)χA.

Thus αm: ℓ∞(∆) → Cm(∆) is a 1-Lipschitz map.

Next, let Am be defined for m = 1, 2, . . . , by

Am = {(u, v) ∈ S(∆) : αmv ≥ u}.

Lemma 3.3: There is a 1-Lipschitz map ψm: S(∆) → S(∆) such that:

(i) ψm is a retraction of Am onto diagS(∆) ∩ Am.

(ii) ψm(u, v) � (u, v) for all (u, v) ∈ S(∆).

(iii) If n ≥ m then ψm(An) ⊂ An.

Note here that diagS(∆) ∩Am = {(f, f) : f ∈ Cm(∆)}.

Proof of the Lemma: Let us define σm: S(∆) → Cm(∆) by

σm(u, v) = inf
(u′,v′)∈Am

(αmv
′ + max(‖u− u′‖∞, ‖v − v′‖∞)).

Here the infimum is taken pointwise, and it is clear that σm is a 1-Lipschitz

map. Note that for all (u′, v′) ∈ Am we have

αmv ≤ αmv
′ + ‖v − v′‖∞

and

u ≤ u′ + ‖u− u′‖∞ ≤ αmv
′ + ‖u− u′‖∞

so that we have the properties:

(3.1) σm(u, v) ≥ max(u, αmv) (u, v) ∈ S(∆).
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and

(3.2) σm(u, v) = αmv (u, v) ∈ Am.

Similarly, we define τm: S(∆) → Cm(∆) by

τm(u, v) = sup
(u′,v′)∈Am

(αmv
′ − max(‖u− u′‖∞, ‖v − v′‖∞)).

Then τm is also 1-Lipschitz and we have

(3.3) τm(u, v) ≤ αmv (u, v) ∈ S(∆)

and

(3.4) τm(u, v) = αmv (u, v) ∈ Am.

Thus σm and τm are simply the maximal and minimal 1-Lipschitz extensions

of the map (u, v) → αmv from Am into Cm(∆).

Define

ψm(u, v) = (max(u, τm(u, v)),min(v, σm(u, v))) (u, v) ∈ S(∆).

The first component is clearly in U(∆) and the second component is in L(∆).

Furthermore, we have by (3.1) and (3.3), that

max(u, τm(u, v)) ≤ min(v, σm(u, v))).

Hence ψm maps S(∆) to itself and (ii) holds.

If (u, v) ∈ An where n ≥ m then σm(u, v) and τm(u, v) are constant on each

A ∈ Vn. Hence,

αn(min(v, σm(u, v)) = min(αnv, σm(u, v)) ≥ max(u, τm(u, v)).

Thus if n ≥ m we have ψm(An) ⊂ An, i.e., (iii) holds.

We also have

|max(u, τm(u, v)) − max(u′, τm(u′, v′))| ≤ max(‖u− u′‖∞, ‖v − v′‖∞)

and

|min(v, σm(u, v)) − min(v′, σm(u′, v′))| ≤ max(‖u− u′‖∞, ‖v − v′‖∞)

so that ψm is 1-Lipschitz.
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If (u, v) ∈ Am then ψm(u, v) = (αmv, αmv) so that (i) holds.

To complete the proof of the theorem, we will show that

θ∆(u, v) = lim
m→∞

ψm ◦ ψm−1 ◦ · · · ◦ ψ1(u, v)

defines the required map. Notice that the right-hand side converges and is

eventually constant if (u, v) ∈
⋃

m≥1 Am. To prove pointwise convergence for

all (u, v) it will suffice (since all the maps are 1-Lipschitz) to show that
⋃

m≥1 Am

is dense in S(∆). In fact, the set of (u, v) so that inf(v − u) > 0 is contained in

the union. Indeed, αmv − u is an increasing sequence of lower-semi-continuous

functions which converges pointwise to v−u. By Dini’s theorem there exists m

so that αmv − u ≥ 0 everywhere i.e. (u, v) ∈ Am. Since the set of (u, v) with

inf(v − u) > 0 is trivially dense we have convergence.

Obviously θ∆ is contractive and θ∆(u, v) � (u, v). Furthermore since
⋃

m≥1 Am is mapped into diag S(∆) it is clear that θ∆ satisfies all our con-

ditions.

The following theorem will be basic for our future considerations:

Theorem 3.4: Let K be a compact metric space and M any metric space.

Suppose Fl: M → L(K) and Fu: M → U(K) are two Lipschitz maps such that

Fu(x) ≤ Fl(x) x ∈M.

Then there is a Lipschitz map F : M → C(K) such that

Fu(x) ≤ F (x) ≤ Fl(x) x ∈M

and Lip(f) ≤ max(Lip(Fl),Lip(Fu)).

Proof: Let us prove this for the special case when K = ∆. Indeed in this case

we simply define F (x) by (F (x), F (x)) = θ∆(Fu(x), Fl(x)), where θ∆ is given

by Theorem 3.2.

Now let K be an arbitrary compact metric space. Let R,S be the operators

given by Proposition 3.1. We can regard U(K) and L(K) as subsets of C(K)∗∗

via the formula

〈µ, f〉 =

∫

fdµ µ ∈ M(K).

Assume the result is known for ∆. Then given Fu, Fl as above we define Gu =

S∗∗Fu and Gl = S∗∗Fl. We claim that if x ∈ M, Gu(x) ∈ U(∆). Indeed, take

any bounded sequence (fn)∞n=1 in C(K) so that fn(t) ↓ Fu(x)(t) for t ∈ K. Then
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Sfn(t) ↓ g(t) for some g ∈ U(∆). However it is clear that g = S∗∗Fu(x) since

for any µ ∈ M(∆) we have

∫

gdµ = lim
n→∞

∫

Sfndµ =

∫

Fu(x)d(S∗µ).

Similarly we can argue that Gl(x) ∈ L(∆). Clearly, Lip(Gu) ≤ Lip(Fu) and

Lip(Gl) ≤ Lip(Fl). It then follows we can find a Lipschitz map G: M → C(∆)

with

Gu(x) ≤ G(x) ≤ Gl(x) x ∈M

and Lip(G) ≤ max(Lip(Fu),Lip(Fl)). Define F (x) = R(G(x)) and we are

done.

The following theorem improves the result of Lindenstrauss [10], who proved

the same result with constant 20. He also obtained the constant 2 but only for

extending maps to finitely many additional points.

Theorem 3.5: If K is a compact metric space, then C(K) is a 2-absolute

Lipschitz retract.

Proof: It is enough to produce a 2-Lipschitz retract from ℓ∞(K) onto C(K).

For any f ∈ ℓ∞(K), define Lf, Uf to be its lower-semi-continuous and upper-

semi-continuous regularizations i.e.,

Lf(s) = lim inf
t→s

f(t), Uf(s) = lim sup
t→s

f(t) s ∈ K.

Then Lip(L),Lip(U) = 1. Now Lf ≤ f ≤ Uf and in fact

Uf ≤ Lf + 2d(f, C(K)).

Hence, if we define

Fu(f) = Uf − d(f, C(K)), Fl(f) = Lf + d(f, C(K)),

then Lip(Fu),Lip(Fl) ≤ 2 and the hypotheses of Theorem 3.4 are satisfied.

Hence we obtain a Lipschitz map F : ℓ∞(K) → C(K) with Lip(F ) ≤ 2 and

Uf − d(f, C(K)) ≤ F (f) ≤ Lf + d(f, C(K)).

Clearly F is our desired Lipschitz retract.
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4. A criterion for the existence of extensions

In this section we develop criteria to determine whether (E,M) has the (λ, c0)-

extension property or the (λ, C(K))-extension property. This is based on ideas

in [9].

Theorem 4.1: Suppose M is a metric space and E is a separable subset of M .

Then the following statements are equivalent:

(i) (E,M) has the Lipschitz (λ, c0)-EP.

(ii) For every a ∈ M \ E, every Lipschitz map F0: E → c0 has an extension

F : E ∪ {a} → c0 with Lip(F ) ≤ λLip(F0).

(iii) If a ∈ M \ E and ǫ > 0, then there is a finite subset {e1, . . . , en} of E so

that:

(4.1) min
1≤j≤n

d(ej , x) ≤ λd(a, x) + ǫ x ∈ E.

(iv) If a ∈ M \ E and ǫ > 0 then for every sequence (xk)∞k=1 in E there is an

infinite subset M of N and e ∈ E so that

(4.2) d(e, xk) ≤ λd(a, xk) + ǫ k ∈ M.

The implications (iii) ⇒ (iv) ⇒ (i) ⇒ (ii) hold without the assumption of

separability of E.

Proof: (i) ⇒ (ii) is obvious.

Let us prove (ii) ⇒ (iii). Suppose (a, ǫ) are chosen so that (iii) fails. Let

us pick any sequence {x2n−1}∞n=1 dense in E. Then pick a further sequence

(x2n)∞n=1 inductively so that

λd(a, x2n) + ǫ < min
1≤j≤2n−1

d(xj , x2n).

Define F0: E → c0 by

F0(x) =
(

min
1≤k≤n

d(x, xk)
)∞

n=1
.

Suppose F0 has an extension F to E ∪ {a} with Lip(F ) ≤ λLip(F0). Let

F (a) = (ξn)∞n=1. Then for every n

ξ2n−1 ≥ min
1≤j≤2n−1

d(x2n, xj) − λd(a, x2n) > ǫ

contrary to assumption.

(iii) ⇒ (iv) is obvious.



Vol. 162, 2007 EXTENDING LIPSCHITZ MAPS INTO C(K)-SPACES 285

We next prove (iii) ⇒ (ii). (This does not require separability of E). Suppose

F0: E → c0 is a Lipschitz function with Lip(F0) = 1. Let F0(x) = (ϕn(x))∞n=1.

Then Lip(ϕn(x)) ≤ 1. For any a ∈M we define

gn(a) = inf
x∈E

(ϕn(x) + λd(x, a))

and

hn(a) = sup
x∈E

(ϕn(x) − λd(x, a)).

Then gn(a) ≥ hn(a) and Lip(gn),Lip(hn) ≤ λ. If we define

fn(a) =







hn(a) if hn(a) ≥ 0
gn(a) if gn(a) ≤ 0
0 otherwise,

then fn is also Lipschitz and Lip(fn) ≤ λ. We define F (x) = (fn(x))∞n=1.

Clearly F (x) = F0(x) if x ∈ E and F maps into ℓ∞. We need only check that

F has range in c0.

Suppose a /∈ E. If F (a) is not in c0 we can find an infinite subset M of N and

ǫ > 0 so that either

(4.3) fn(a) > 2ǫ, n ∈ M

or

(4.4) fn(a) < −2ǫ, n ∈ M.

In the former case (4.3) we have fn(a) = hn(a) for n ∈ M. Hence, there exist

(xn)n∈M with xn ∈ E and

ϕn(xn) − λd(xn, a) > 2ǫ n ∈ M.

Now by (iv) we pass to a further subsequence J ⊂ M so that for some e ∈ E we

have

d(e, xn) < λd(a, xn) + ǫ n ∈ J.

Thus

ϕn(e) > ϕn(xn) − d(xn, e) > ǫ n ∈ J

which gives a contradiction since limn→∞ ϕn(e) = 0. The treatment of the case

of (4.4) is similar. Hence F (a) ∈ c0.
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Theorem 4.2: Let M be a metric space and suppose E is a separable subset

of M . The following conditions are equivalent:

(i) (E,M) has the Lipschitz (λ, C(K))-EP for every compact metric space K.

(ii) (E,M) has the Lipschitz (λ, c)-EP.

(iii) If K is a compact metric space and F0: E → c is a Lipschitz map and

a ∈ M \ E, then there is an extension F : E ∪ {a} → c with Lip(F ) ≤

λLip(F0).

(iv) If a ∈M \E and ǫ > 0, there is a finite set {e1, . . . , en} ⊂ E such that for

any x, y ∈ E

(4.5) min
1≤j≤n

(d(ej , x) + d(ej , y)) ≤ λ(d(a, x) + d(a, y)) + ǫ x, y ∈ E.

(v) If a ∈M \E and (xn)∞n=1 and (yn)∞n=1 are two sequences in E, there exists

e ∈ E and an infinite subset M of N so that

(4.6) d(e, xn) + d(e, yn) ≤ λ(d(a, xn) + d(a, yn)) + ǫ n ∈ N.

The implications (iv) ⇒ (v) ⇒ (i) ⇒ (ii) ⇒ (iii) hold without the assump-

tion of separability of E.

Proof: (i) ⇒ (ii) ⇒ (iii) are clear. Let us prove (iii) ⇒ (iv) (this requires

separability of E). Let (en)∞n=1 be any dense sequence in E. If (iv) fails for

some ǫ > 0 we can construct sequences (xn)∞n=1 and (yn)∞n=1 in E so that

λ(d(a, xn) + d(a, yn)) + ǫ < d(xj , xn) + d(xj , yn) j < n(4.7)

λ(d(a, xn) + d(a, yn)) + ǫ < d(yj , xn) + d(yj , yn) j < n.(4.8)

and

(4.9) λ(d(a, xn) + d(a, yn)) + ǫ < d(ej , xn) + d(ej , yn) j < n.

We note that taking a subsequence, since E is separable, we can suppose

that limk→∞(d(e, xk) − d(a, xk)) exists for all e ∈ E. We proceed by defining a

sequence of functions fn: E → R. We first set:

f2n−1(x) = d(x, xn) − d(a, xn) n = 1, 2, . . . .

Obviously Lip(f2n−1) = 1. We then define ϕn on the set En = {xk}n
k=1 ∪

{yk}
n
k=1 ∪ {ek}

n
k=1 by

ϕn(xj) = f2n−1(xj), ϕn(yj) = f2n−1(yj) j < n
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and

ϕn(ej) = f2n−1(ej) j ≤ n,

but

ϕn(xn) = f2n−1(xn) + λ(d(xn, a) + d(yn, a)) − d(xn, yn) + ǫ

and

ϕn(yn) = f2n−1(yn) + λ(d(xn, a) + d(yn, a)) − d(xn, yn) + ǫ.

We then claim that Lip(ϕn) ≤ 1. Indeed, it suffices to estimate ϕn(w)− ϕn(z),

when w = xn or w = yn and z ∈ {xk}
n−1
k=1 ∪ {yk}

n−1
k=1 ∪ {ek}n

k=1. In these case

ϕn(w) − ϕn(z) ≥ f2n−1(w) − f2n−1(z) ≥ −d(w, z)

but, using (4.7), (4.8) and (4.9), we get

ϕn(w) − ϕn(z) ≤ d(w, xn) + d(yn, z) − d(xn, yn) ≤ d(w, z)

by considering the cases w = xn and w = yn. Now let f2n be any 1-Lipschitz

extension of ϕn to E.

Let F0(x) = (fn(x))∞n=1. Then F0: E → c is 1-Lipschitz. Let F (x) =

(gn(x))∞n=1 be any extension to M with Lipschitz constant at most λ. Then

g2n(a) ≥ f2n(yn) − λd(a, yn)

and

g2n−1(a) ≤ f2n−1(xn) + λd(a, xn).

Thus

g2n(a) − g2n−1(a) ≥ ǫ

for every n which contradicts the fact that F maps into c.

(iv) ⇒ (v) is immediate. Let us conclude by proving (v) ⇒ (i). Suppose E is a

nonempty subset of M and F0: E → C(K) is a Lipschitz map with Lip(F0) ≤ 1.

Let us define G,H : M → ℓ∞(K) and H : M → ℓ∞(K) by

G(x) = inf{F0(e) + λd(e, x) : e ∈ E}

and

H(x) = sup{F0(e) − λd(e, x) : e ∈ E}.

Then Lip(G),Lip(H) ≤ λ and H ≤ G. We now define

Fu(x)(s) = lim sup
t→s

H(x)(t) s ∈ K,x ∈M
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and

Fl(x)(s) = lim inf
t→s

G(x)(t) x ∈ K,x ∈M.

Thus Fu(x) is the upper-semi-continuous regularization ofH(x) and Fl(x) is the

lower-semi-continuous regularization of G(x). It is clear that Fu: M → U(K),

Fl: M → L(K) satisfy Lip(Fu),Lip(Fl) ≤ λ and Fu(e) = Fl(e) = F0(e) for

e ∈ E.

We now need to show that Fu(a) ≤ Fl(a) for a /∈ E. Suppose on the contrary

that Fu(a)(s) > Fl(a)(s) + 2ǫ for some a ∈ M , s ∈ K and ǫ > 0. Then there

exist sequences (sn)∞n=1, (s
′
n)∞n=1 in K with sn, s

′
n → s and H(sn) > G(s′n)+2ǫ.

Hence there exist sequences (xn)∞n=1 and (yn)∞n=1 in E so that

F0(yn)(s′n) − λd(a, yn) > F0(xn)(sn) + λd(a, xn) + 2ǫ n ∈ N.

Now using (v) we may find e ∈ E and an infinite subset M of N so that

d(e, xn) + d(e, yn) ≤ λ(d(a, xn) + d(a, yn)) + ǫ n ∈ M.

Let F0(e) = f ∈ C(K). Then F0(yn) ≤ f + d(e, yn) and F0(xn) ≥ f − d(e, xn).

Thus

f(s′n) − f(sn) > λ(d(a, yn) + d(a, xn)) − (d(e, xn) + d(e, yn)) + 2ǫ ≥ ǫ n ∈ M.

This contradicts the continuity of f for large n.

Thus Fu(a) ≤ Fl(a) and by Theorem 3.4 we can find a Lipschitz function

F : M → C(K) with Lip(F ) ≤ λ and Fu ≤ F ≤ Fl (so that F is the desired

extension).

In view of the equivalence of (i) and (ii) above we say that (E,M) has the

Lipschitz (λ, C)-EP if (E,M) has the Lipschitz (λ, C(K))-EP for every compact

metric space K. It is clear that if (E,M) has the Lipschitz (λ, C(K))-EP for

some infinite compact metric space K then it has the Lipschitz (λ, c)-EP and

hence the Lipschitz (λ, C)-EP (since c is isometric to a 1-complemented subspace

of C(K)). We thus use C to denote any C(K) for an infinite compact metric

space.

Let us make a few simple deductions from these results.

Proposition 4.3: Let M be a metric space and suppose E is a subset of

M . Then if (E,M) has the Lipschitz (λ, C)-EP, then (E,M) has the Lipschitz

(λ, c0)-EP.

Proof: This is immediate since (4.5) reduces to (4.1) if we take x = y.
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Remark: Let us remark that (4.6) holds automatically if either:

(i) λ > 1 and one of the sequences (xn)∞n=1 or (yn)∞n=1 is metrically un-

bounded, or

(ii) either (xn)∞n=1 or (yn)∞n=1 has a Cauchy subsequence.

To prove the latter statement, suppose (xn)∞n=1 has a weakly Cauchy subse-

quence. Then there must exist an infinite subset M of N and e ∈ E so that

d(xn, e) <
1
2ǫ for n ∈ M. Now for n ∈ M we have

d(xn, e) + d(yn, e) < d(xn, yn) + ǫ ≤ d(xn, a) + d(yn, a) + ǫ.

Thus we deduce:

Proposition 4.4:

(i) If E is a compact subset of a metric space then (E,M) has the Lipschitz

C-IEP.

(ii) If E has the Heine-Borel property then (E,M) has the almost isometric

Lipschitz C-EP.

In fact, a stronger form of (i) is a consequence of a result of Espinola and Lopez

([5]), who showed that every compact subset of a C(K)-space is contained in a

compact hyperconvex subset.

Proposition 4.5: Suppose (E,M) has the Lipschitz (λ, C)-EP (respectively,

the Lipschitz (λ, c0)-EP) for every λ > λ0. If either λ0 > 1 or if E is metrically

bounded, then (E,M) has the Lipschitz (λ0, C)-EP (respectively, the Lipschitz

(λ0, c0)-EP).

Proof: Assume (E,M) fails the Lipschitz (λ0, C)-EP. Then there exists a ∈

M \ E, ǫ > 0 and metrically bounded sequences (xn)∞n=1 and (yn)∞n=1 in E so

that (4.6) fails for λ = λ0 (for any subsequence). It is then trivial to see that it

fails also for some λ > λ0 and 0 < ǫ′ < ǫ. The c0-case is similar.

Another deduction from these remarks is the following:

Proposition 4.6: Let M be a metric space and suppose E is a subset of M .

Then

(i) (E,M) has the Lipschitz c0-AIEP if and only if whenever a /∈ E, ǫ > 0

and (xn)∞n=1 is a metrically bounded sequence in E there is an infinite

subset M of N and e ∈ E with

d(e, xn) < d(a, xn) + ǫ n ∈ M.
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(ii) (E,M) has the Lipschitz C-AIEP if and only if whenever a /∈ E, ǫ > 0

and (xn)∞n=1, (yn)∞n=1 are metrically bounded sequences in E there is an

infinite subset M of N and e ∈ E with

d(e, xn) + d(e, yn) < d(a, xn) + d(a, yn) + ǫ n ∈ M.

The consequence of this remark is that we obtain almost isometric exten-

sions by checking bounded sequences and then the isometric extensions require

additionally checking of unbounded sequences.

5. Extension properties for arbitrary metric spaces

Since both c0 and C(K) for any compact metric spaceK are 2-absolute Lipschitz

retracts it follows that any metric space has both the (2, c0)-EP and (2, C)-EP.

Let us now give criteria for the Lipschitz (λ, c0)- and (λ, C)-extension proper-

ties when 1 ≤ λ ≤ 2. These properties can be described in terms of forbidden

sequences.

Theorem 5.1: Let M be a metric space and suppose λ ≥ 1. The following

conditions on M are equivalent:

(i) M has the Lipschitz (λ, c0)-EP.

(ii) If ǫ > 0 and a ∈M , then it is impossible to find a sequence (xn)∞n=1 in M

such that

(5.1) λd(a, xk) + ǫ < d(xj , xk) 1 ≤ j ≤ k − 1.

If λ > 1 the sequence (xk)∞k=1 in (ii) can be assumed bounded.

Proof: This follows from Theorem 4.1. Indeed if (ii) holds, then an easy

induction argument shows that (iii) of Theorem 4.1 holds for any E and a ∈

M \E and so M has the (λ, c0)-EP. If (4.1), fails then given (x1, . . . , xk−1) ∈ E

(assumed to satisfy (5.1) we may find xk ∈ E so that (5.1) continues to hold.

Conversely if (i) and there exist (ǫ, a, x1, . . .) so that (5.1) holds then we may

take E = {xk}∞k=1 and now (iv) of Theorem 4.1 fails. Since E is countable this

implies that (E,M) fails the Lipschitz (λ, c0)-EP contrary to assumption.

Theorem 5.2: Let (M,d) be a metric space and suppose λ ≥ 1. Then the

following conditions on M are equivalent:

(i) M has the Lipschitz (λ, C)-EP.
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(ii) If ǫ > 0 and a ∈ M then it is impossible to find sequences (xn)∞n=1 and

(yn)∞n=1 in M such that

(5.2) λ(d(a, xk) + d(a, yk)) + ǫ < d(xj , xk) + d(xj , yk) 1 ≤ j ≤ k − 1

and

(5.3) λ(d(a, xk) + d(a, yk)) + ǫ < d(yj , xk) + d(yj , yk) 1 ≤ j ≤ k − 1.

If λ > 1 the sequences (xk)∞k=1 and (yk)∞k=1 may be assumed metrically

bounded.

Proof: This follows in a similar way from Theorem 4.2. Indeed if (ii) holds

then we can verify (iv) of Theorem 4.2 for any subset E and a ∈ M \ E by

a simple induction argument. As before, if (4.5) does not hold then given

{x1, . . . , xk−1, y1, . . . , yk−1} ⊂ E satisfying (5.2) and (5.3), we may find xk, yk

so that both (5.2) and (5.3) continue to hold.

Conversely if (i) then if (5.2) and (5.3) hold, taking E = {xk}∞k=1 ∪ {yk}∞k=1

we contradict (v) of Theorem 4.2.

Remarks: It should be observed here that M has the Lipschitz C-IEP if and

only if we cannot find ǫ > 0, a ∈ M and sequences (xn)∞n=1, (yn)∞n=1 in M

satisfying (5.2) and (5.3) for λ = 1. On the other hand M has the Lipschitz

C-AIEP if and only if we cannot find ǫ > 0, a ∈ M and metrically bounded

sequences (xn)∞n=1, (yn)∞n=1 in M satisfying (5.2) and (5.3) for λ = 1. This

follows from Proposition 4.6.

We also note that (5.2) and (5.3) cannot hold if either of sequences (xn)n=1

or (yn)∞n=1 has a Cauchy subsequence. Indeed suppose we can find n > k so

that d(xn, xk) < 1
2ǫ. Then

d(xn, xk) + d(yn, xk) < d(yn, xn) + ǫ ≤ d(a, xn) + d(a, yn) + ǫ.

(See the Remark after Proposition 4.3.)

It will also be useful to note the following:

Theorem 5.3: Let (M,d) be a metric space and suppose λ ≥ 1. Then the

following conditions on M are equivalent:

(i) M has the Lipschitz (λ, C)-EP and the Lipschitz (λ, C)-UEP.

(ii) Every subset of M has the Lipschitz (λ, C)-EP.
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(iii) Whenever M is isometrically embedded in some metric space M ′, ǫ > 0

and a ∈ M ′ then it is impossible to find sequences (xn)∞n=1 and (yn)∞n=1

in M such that

(5.4) λ(d(a, xk) + d(a, yk)) + ǫ < d(xj , xk) + d(xj , yk) 1 ≤ j ≤ k − 1

and

(5.5) λ(d(a, xk) + d(a, yk)) + ǫ < d(yj , xk) + d(yj , yk) 1 ≤ j ≤ k − 1.

If λ > 1 the sequences (xk)∞k=1 and (yk)∞k=1 may be assumed metrically

bounded.

Proof: (i)⇔(ii) is Proposition 2.1.

(ii)⇒(iii). Again, this follows by using Theorem 4.2 for the case

E = {xk}
∞
k=1 ∪ {yk}

∞
k=1.

(iii)⇒(i) is similar to the previous theorem.

As in the preceding case it is impossible to have (5.4) and (5.5) when either

sequence (xn)∞n=1 or (yn)∞n=1 has a Cauchy subsequence.

Corollary 5.4: (i) If M has the Lipschitz (λ, C)-EP then M has the Lipschitz

(λ, c0)-EP.

(ii) If M has the Lipschitz (λ, c0)-EP then M has the Lipschitz (1+ 1
2λ), C)-EP.

In particular M fails the Lipschitz (λ, C)-EP for every λ < 2 if and only if M

fails the Lipschitz (λ, c0)-EP for every λ < 2.

Proof: (i) follows from Proposition 4.3. For (ii) we suppose µ = 1 + 1
2λ and

that a ∈M , ǫ > 0 and (xk)∞k=1, (yk)∞k=1 are bounded sequences chosen so that

(5.6) µ(d(a, xk) + d(a, yk)) + ǫ < d(xj , xk) + d(xj , yk) 1 ≤ j ≤ k − 1

and

(5.7) µ(d(a, xk) + d(a, yk)) + ǫ < d(yj , xk) + d(yj , yk) 1 ≤ j ≤ k − 1.

We may assume without loss of generality, by passing to a subsequence, that

the limits limn→∞ d(a, xn) = ξ and limn→∞ d(a, yn) = η exist and that ξ ≤ η.

Now by Theorem 5.1 (iv) given any m0 there exists m ≥ m0 and an infinite

subset M of N such that

d(xm, xn) ≤ λd(xn, a) +
1

2
ǫ n ∈ M.
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and

d(xm, yn) ≤ d(xm, a) + d(yn, a).

Hence for n ∈ M with n > m,

µ(d(a, xn) + d(a, yn)) +
1

2
ǫ < λd(a, xn) + d(xm, a) + d(yn, a).

Letting n→ ∞ we have

(1 +
1

2
λ)(ξ + η) +

1

2
ǫ ≤ λξ + η + d(xm, a).

Now we can let m→ ∞ and obtain

(1 +
1

2
λ)(ξ + η) +

1

2
ǫ ≤ λξ + η + ξ

i.e.

λ(η − ξ) +
1

2
ǫ ≤ 0

contrary to assumption.

Theorem 5.5: Suppose X is a finite-dimensional normed space. Then every

subset of X has the Lipschitz c0-UIEP property; in particular, X has the Lips-

chitz c0-IEP.

Proof: Suppose E ⊂ X is embedded in a metric space M and a ∈M \ E. We

use (iv) of Theorem 4.1. Fix ǫ > 0. We consider a sequence in E, (xn)∞n=1.

If (xn)∞n=1 has a bounded subsequence then it follows from the Heine–Borel

property of X that (4.2) is satisfied for some M. We therefore may assume

passing to a subsequence ‖x1‖ > 0 and that ‖xn‖ > n‖xn−1‖ for n ≥ 2 and

that yn = xn/‖xn‖ is convergent to some y ∈ Y . Assume that for every k the

set of n such that

‖xn − xk‖ < d(a, xn) + ǫ

is finite. Then by passing to a subsequence we can suppose that

‖xn − xk‖ ≥ d(a, xn) + ǫ n > k.

Let x∗n,k be a norming functional for xn−xk i.e., ‖x∗n,k‖ = 1 and x∗n,k(xn−xk) =

‖xn − xk‖. Then

x∗n,k(xn − xk) ≥ ‖xn‖ − d(a, 0) + ǫ ≥ x∗n,k(xn) − d(a, 0) + ǫ.

Hence,

x∗n,k(xk) ≤ d(a, 0) − ǫ n > k.
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Let y∗k be a cluster point of (x∗n,k)∞n=1. Then y∗k(y) = 1 but

y∗k(yk) ≤ ‖xk‖
−1(d(a, 0) − ǫ) k ∈ N.

If y∗ is a cluster point of (y∗k)∞k=1, then it follows that y∗(y) = 0 which gives a

contradiction.

Theorem 5.6: Let M be a metric space. The following conditions on M are

equivalent:

(i) M has the Heine–Borel property.

(ii) Every subset of M has the Lipschitz C-UAIEP.

(iii) Every subset of M has the Lipschitz (λ, C)-UEP for some λ < 2.

(v) Every subset of M has the Lipschitz (λ, c0)-UEP for some λ < 2.

Proof: (i) ⇒ (ii) follows from Proposition 4.5.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (iv) follows from Proposition 4.3.

(iv) ⇒ (i) If M fails the Heine–Borel property for any µ > 1 we can find an

infinite sequence (xn)∞n=1 such that for some δ > 0 we have

δ < d(xj , xk) < µδ j, k ∈ N.

Let E = {xj}∞j=1 and adjoin a point a to M such that d(a, xj) = 1
2µδ for all

j ∈ N. Let ǫ = νδ where ν > 0. We see that the hypotheses of Theorem 4.1 (v)

can only hold if

1 ≤
1

2
λµ+ ν.

Since µ > 1 and ν > 0 are arbitrary this reaches a contradiction if λ < 2.

Example: The following example shows that we cannot prove a similar result

to Theorem 5.6 for the isometric case. Consider the metric on N defined by

d(m,n) = max(m,n) for m 6= n. It is easy to see that the space (N, d) has the

Heine–Borel property and the Lipschitz C-IEP. However if one adjoins 0 and

defines d(0, n) = n−1/2 then it is clear in Theorem 4.1 that (iv) fails for a = 0,

xn = n and ǫ < 1/2. Thus this space fails to have the Lipschitz C-UIEP or

Lipschitz c0-UIEP.

Let us note at this point that it is easy to give examples of metric spaces

which fail the Heine–Borel property but nevertheless have the C-IEP. This is a

consequence of the following
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Proposition 5.7: Let (M,d) be an ultrametric space; thenM has the Lipschitz

C-IEP.

Proof: Suppose we can find a ∈ M ǫ > 0 and two sequences (xn)n=1, (yn)∞n=1

such that (5.2) and (5.3) both hold. Let

σk = min(d(xk, a), d(yk, a)) k = 1, 2, . . .

Fix k and suppose for example that d(xk, a) = σk. Then

d(xk+1, xk) ≤ max(σk, d(xk+1, a)), d(yk+1, xk) ≤ max(σk, d(yk+1, a)).

Hence either

d(xk+1, a) < σk − 1/2ǫ

or

d(yk+1, a) < σk − 1/2ǫ.

This implies

σk+1 < σk − 1/2ǫ k = 1, 2, . . .

which gives a contradiction.

If X is an infinite-dimensional Banach space then the Kottman constant

[7] of X is defined by:

κ(X) = sup
xn∈BX

sep(xn)

where for any sequence (xn)∞n=1 we define

sep(xn) = inf
m 6=n

‖xm − xn‖.

A result of Elton and Odell [4] asserts that κ(X) > 1 for every infinite-dimen-

sional Banach space. See also [8] for a recent lower estimate for κ(X) for X

non-reflexive.

It is an immediate consequence of Theorem 5.1 that:

Proposition 5.8: If X is an infinite-dimensional Banach space, then X has

the Lipschitz (λ, c0)-IEP if and only if λ ≥ κ(X).

In particular, X fails the Lipschitz c0-AIEP: this result is due to Lancien and

Randrianantoanina [9].

We remark that if 1 ≤ p <∞ then κ(ℓp) = 21/p while κ(c0) = 2 ([7] and [3]).

We next show that for these spaces if 1 ≤ p ≤ 2, the Lipschitz (λ, c0)-EP and

the Lipschitz (λ, C)-EP are equivalent:
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Proposition 5.9: For 1 ≤ p ≤ 2, ℓp has the Lipschitz (λ, C)-EP if and only if

λ ≥ κ(ℓp) = 21/p. Similarly c0 has the Lipschitz (λ, C)-EP if and only if λ = 2.

Proof: For the case of ℓ1 and c0 this is immediate from Corollary 5.4. We

consider the case 1 < p ≤ 2. We will need the following inequality:

(5.8) 21/ps+ (sp + tp + (u+ v)p)1/p ≤ 21/p((sp + up)1/p + (tp + vp)1/p)

0 ≤ s ≤ t, u, v ≥ 0.

We first note that to establish (5.8) we need only consider the case s = t.

This follows since

21/p(tp + vp)1/p − (sp + tp + (u+ v)p)1/p

is increasing as a function of t if s, u, v are fixed. Thus we need to prove:

(5.9) s+ (sp + 1/2(u+ v)p)1/p ≤ (sp + up)1/p + (sp + vp)1/p 0 ≤ s, u, v.

In fact, using the concavity of t → t1/p, the fact that p ≤ 2 and the triangle

law in ℓp we have

s+ (sp + 1/2(u+ v)p)1/p ≤ 2(sp + 1/4(u+ v)p)1/p

≤ 2(sp + (1/2(u+ v))p)1/p

≤ (sp + up)1/p + (sp + vp)1/p

and this proves (5.9) and hence (5.8).

Now suppose a ∈ ℓp and (xn)∞n=1, (yn)∞n=1 are two bounded sequences. We will

verify (ii) of Theorem 5.2 with λ = 21/p. Assume that (xn)∞n=1, (yn)∞n=1, a, ǫ sat-

isfy (5.2) and (5.3) and that both (xn)∞n=1 and (yn)∞n=1 are bounded sequences.

We may assume that limn→∞ ‖xn−a‖ and limn→∞ ‖yn−a‖ both exist and that

limn→∞ xn = x weakly and limn→∞ yn = y weakly. Further we can suppose

that limn→∞ ‖un‖ = ξ and limn→∞ ‖vn‖ = η exist where un = xn − x and

vn = yn − y. Let us suppose ξ ≤ η.

Then if m > n,

21/p(‖xm − a‖ + ‖ym − a‖) + ǫ < ‖xm − xn‖ + ‖ym − xn‖.

We shall show, however, that

(5.10) 21/p lim
m→∞

(‖xm − a‖+ ‖ym − a‖) ≥ lim
n→∞

lim
m→∞

(‖xm − xn‖+ ‖ym − xn‖)

(and all limits exist) and this gives us a contradiction.
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Now,

lim
m→∞

‖xn − xm‖ = lim
m→∞

‖um − un‖ = (‖un‖
p + ξp)1/p.

Thus

lim
n→∞

lim
m→∞

‖xn − xm‖ = 21/pξ.

Similarly

lim
m→∞

‖ym − xn‖ = (‖y − xn‖
p + ηp)1/p

so that

lim
n→∞

lim
m→∞

‖ym − xn‖
p = (‖y − x‖p + ηp + ξp)1/p.

Now, using (5.8)

21/pξ + (‖y − x‖p + ηp + ξp)1/p

≤ 21/pξ + ((‖a− y‖ + ‖a− x‖)p + ηp + ξp)1/p

≤ 21/p
(

(‖a− x‖p + ξp)1/p + (‖a− y‖p + ηp)1/p
)

= 21/p( lim
n→∞

‖xn − a‖ + lim
n→∞

‖yn − a‖).

This proves (5.10) and hence the Proposition.

Note the argument of Proposition 5.9 fails for 2 < p < ∞. We are very

grateful to Yves Dutrieux for pointing out an error in an earlier version of this

Proposition.

Proposition 5.10: c0,+ has the Lipschitz c0-IEP.

Proof: Suppose a, (xn)∞n=1 ǫ > 0 satisfy (4.2) for λ = 1. Let Pk: c0,+ → c0,+

be the map Pk(ξ) = (ξ1, . . . , ξk, 0, . . .) and let Qk = I − Pk. Fix n so that

‖Qna‖ < ǫ/2. We now argue by Ramsey’s theorem that there is an infinite

subset A of N so that either

‖xk − xj‖ = ‖Pn(xk − xj)‖ j, k ∈ A

or

‖xk − xj‖ = ‖Qn(xk − xj)‖ j, k ∈ A.

Let us consider the first case. Then the sequence (Pnxk)k∈A and Pna satisfy

(5.1) and thus contradict Theorem 5.5 for ℓn∞. Hence the second case must hold.

Now it easy to see that

‖Qn(xk − xj)‖ ≤ max{‖Qnxk‖, ‖Qnxj‖}.
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On the other hand

‖xk − a‖ ≥ ‖Qnxk‖ −
1

2
ǫ.

Hence if k, j ∈ A with k > j we have

‖Qnxj‖ > ‖xk − a‖ + ǫ > ‖Qnxk‖ +
1

2
ǫ.

This is clearly impossible since A is infinite.

Remark: Note that c0,+ cannot have the Lipschitz c0-UAIEP because it fails

the Heine–Borel property. See Theorem 5.6 above.

Proposition 5.11: c0,+ has the Lipschitz (λ, C)-EP if and only if λ ≥ 3/2.

Proof: By Corollary 5.4 it is clear that c0,+ has the (λ, C)-EP if λ ≥ 3/2.

For the other direction define a = e1 and two sequences xn = 2e1 + en+1 and

yn = en+1. Then

d(xn, a) + d(yn, a) = 2 n = 1, 2, . . .

and

d(xn, xk) + d(yn, xk) = d(xn, yk) + d(yn, yk) = 3 k < n.

Applying Theorem 5.2 gives the result.

6. Collinearity properties

Suppose (M,d) is a metric space. We will say that the ordered triple of points

{x1, x2, x3} is metrically collinear if

d(x1, x3) = d(x1, x2) + d(x2, x3).

We say that {x1, x2, x3} are ǫ-collinear where ǫ > 0 if

(6.1) d(x1, x3) > d(x1, x2) + d(x2, x3) − ǫ.

Note that if {x1, x2, x3} is ǫ-collinear then so is {x3, x2, x1} but it may or may

not be the case that {x1, x3, x2} is ǫ-collinear.

Let us say that a metric space (M,d) has the collinearity property, if, for

every infinite subset A ⊂ M and every ǫ > 0, there are three distinct points

x1, x2, x3 ∈ A such that {x1, x2, x3} are ǫ-collinear.

This concept appears to be new, but arose independently at the same time

in the work of Melleray [12]. Melleray characterizes metric spaces M with the

collinearity property as those for which the space E(X) of Katetov maps is

separable; we refer to his work for further information.
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Proposition 6.1: Let (M,d) be a metric space. In order that M has the

collinearity property it is necessary and sufficient that:

(a) M has the Heine–Borel property, and

(b) Whenever (xn)∞n=1 is an unbounded sequence in M and ǫ > 0 there is a

subsequence (xn∈A) so that for every j, k, n ∈ A with j < k < n the triple

{xj, xk, xn} is ǫ-collinear.

Proof: Suppose first that M has the collinearity property.

Suppose (xn)∞n=1 is a bounded sequence in M such that infm 6=n d(xm, xn) > 0.

By standard Ramsey theory we can find an infinite subset A of N such that for

some constant c we have c ≤ d(xm, xn) ≤ 3c/2 for m 6= n and m,n ∈ A. But

then (xn)n∈A violates (6.1) for ǫ = c. This proves (a).

For (b) we observe that we may pass to a subsequence J so that d(xj , xk) > 3ǫ

if j, k ∈ J and

d(xn, xj) > 2d(xk, xj) j, k < n, j, k, n ∈ J1.

Now by Ramsey’s theorem there is a further infinite subset J1 so that if j < k <

n with j, k, n ∈ J1 then either {xj , xk, xn} or {xk, xj , xn} is ǫ-collinear. Here we

use the fact that (xj , xk) must be the shortest side in the triangle.

Finally applying Ramsey’s theorem once more, we find an infinite subset A

of J1 so that either we have:

d(xn, xj) > d(xn, xk) + d(xk, xj) − ǫ j < k < n, j, k, n ∈ A

or we have

d(xn, xk) > d(xn, xj) + d(xk, xj) − ǫ j < k < n, j, k, n ∈ A.

Let us prove that the second alternative is impossible. Indeed this implies that

d(xn, xj) < d(xn, xk) − 2ǫ j < k < n, j, k, n ∈ A.

Now suppose j < k < l < n with j, k, l, n ∈ A. Then

d(xn, xl) ≤ d(xn, xj) + d(xj , xl) < d(xn, xk) + d(xk, xl) − 2ǫ.

This is a contradiction and establishes (b).

Conversely if (a) and (b) hold, suppose (xn)∞n=1 is a sequence in M . Then if

(xn)∞n=1 is unbounded we may use (b) to find j < k < n so that

d(xn, xj) > d(xn, xk) + d(xk, xj) − ǫ.
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If (xn)∞n=1 is bounded it has an accumulation point x in the completion of M .

Pick xj , xk, xl so that d(xj , x), d(xk, x), d(xl, x) <
1
2ǫ, and it is clear that (6.1)

is satisfied.

Proposition 6.2: Suppose (Mi)
n
i=1 are metric spaces with the collinearity

property. Then both (
∑n

i=1Mi)ℓ1 and (
∑n

i=1Mi)ℓ∞ have the collinearity prop-

erty.

Proof: In both spaces it is clear that we have the Heine–Borel property.

Now suppose (xk)∞n=1 is an unbounded sequence in (
∑n

j=1Mj)ℓ1 . Letting

xk = (ξk1, . . . , ξkn) by repeated use of Proposition 6.1 given ǫ > 0 there is an

infinite subset A of N so that for each 1 ≤ i ≤ n we have either

di(ξli, ξki) + di(ξki, ξji) < di(ξli, ξji) + ǫ/n l > k > j, l, k, j ∈ A

or

di(ξli, ξki) < ǫ/2n l > k, l, k ∈ A.

It then follows that

d(xl, xk) + d(xk, xj) < d(xl, xj) + ǫ l > k > j, l, k, j ∈ A

and hence (
∑n

j=1Mj)ℓ1 has the collinearity property.

Next suppose (xk)∞n=1 is an unbounded sequence in (
∑n

j=1Mj)ℓ∞ . Then by

Ramsey’s theorem there is an infinite subset A of N and a fixed 1 < i < n so

that

d(xk, xj) = di(ξki, ξji) k > j, k, j ∈ A.

The conclusion follows using the collinearity property in Mi.

Lemma 6.3: Let E be a subset of a metric space M and a ∈M . Suppose E has

the collinearity property. Then, for any sequence (xn)∞n=1 in E and any ǫ > 0

there is an infinite subset (xn)n∈A such that {a, xk, xn} is ǫ-collinear whenever

k < n with k, n ∈ A.

Proof: If (xn)∞n=1 is bounded then since E has the collinearity property we can

pass to a subsequence (xn)n∈A such that d(xk, xn) < 1
2ǫ for k, n ∈ A and it is

then trivial that {a, xk, xn} is ǫ-collinear.

If (xn)∞n=1 we can pass by Proposition 6.1 to a subsequence (xn)n∈A so that

{xj , xk, xn} is 1
2ǫ-collinear when j, k, n ∈ A and j < k < n and also such that

the limit

lim
n→∞

d(xn, a) − d(xn, x1) = ξ
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exists. We can further require that

|d(xn, a) − d(xn, x1) − ξ| <
1

4
ǫ 1 < n ∈ A.

Then if 1 < k < n with k, n ∈ A we have

d(xn, a) − d(xk, a) > d(xn, x1) − d(xk, x1) −
1

2
ǫ > d(xn, xk) − ǫ

and we are done.

We recall that a finite-dimensional normed space X is polyhedral if the unit

ball BX is a polyhedron, or, equivalently X isometrically embeds into ℓm∞ for

some m. The next theorem is a close relative of Theorem 7.7 in [11].

Theorem 6.4: A finite-dimensional normed space X is polyhedral if and only

if X has the collinearity property.

Proof: First note that ℓn∞ has the collinearity property by Proposition 6.2.

Thus any polyhedral space has the collinearity property.

For converse assume X is finite-dimensional but not polyhedral. Then X

contains a two dimensional subspace X0 which is also not polyhedral [6]. Thus

there is a point u ∈ X0 with ‖u‖ = 1 so that u is an accumulation point of

extreme points in BX0
. It is clear that we can choose v ∈ X0 so that if F (t) =

‖u+ tv‖− 1 then F has a minimum at t = 0, the right-hand derivative satisfies

F ′
+(t) = 0 and also F (t) > 0 whenever t > 0. Observe that limt→0+ F

′
−(t) =

F ′
+(0) = 0.

We will now select a sequence xn = sn(u + tnv) with sn, tn > 0 so that

‖xm − xn‖ < ‖xm‖−‖xn‖− 1 if m > n. This will complete the proof by taking

a = 0 in the preceding Lemma.

We will select (sn, tn)∞n=1 inductively so that ‖xm − xn‖ < ‖xm‖ − ‖xn‖ − 1

if m > n and additionally ‖xn‖ − sn = snF (tn) > 1 for all n. Pick s1, t1 > 0

arbitrarily so that s1F (t1) > 1. Now suppose (xk)k<n have been selected. To

pick (sn, tn) we observe that

lim
t→0+

lim
s→∞

sF (t) = ∞
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and for each fixed k < n,

lim
t→0+

lim
s→∞

‖s(u+ tv)‖ − ‖s(u+ tv) − sk(u + tkv)‖

= lim
t→0+

lim
s→∞

s(1 + F (t)) − (s− sk)
(

1 + F
(st− sktk

s− sk

))

= lim
t→0+

lim
s→∞

sk + sF (t) − (s− sk)F
(

t−
sk

s− sk
(tk − t)

)

= lim
t→0+

lim
s→∞

sk + skF (t) + (s− sk)
(

F (t) − F
(

t−
sk

s− sk
(tk − t)

))

= lim
t→0+

sk + skF (t) + sk(tk − t)F ′
−(t)

= sk

< ‖xk‖ − 1.

Hence it is possible to choose sn, tn so that xn = sn(u + tnv) verifies the

inductive hypothesis and the proof is complete.

Theorem 6.5: Let M be a metric space with the collinearity property. Then

M has the Lipschitz C-UIEP and the Lipschitz C-IEP.

Proof: Suppose M is embedded in a metric space (M ′, d). Suppose

a ∈ M ′ \ M . We verify (v) of Theorem 4.2 (i.e. condition (4.6)). Suppose

ǫ > 0 and (xn)∞n=1, (yn)∞n=1 are two sequences in M . We can select an infinite

subset M of N so that if k, n ∈ M and k < n then {a, xk, xn} are ǫ-collinear.

Now for fixed k ∈ M and n ∈ M with n ∈ M,

d(xk, xn) + d(xk, yn) < d(a, xn) − d(a, xk) + ǫ+ d(xk, yn)

≤ d(a, xn) + d(a, yn) + ǫ.

This implies the fact that M has the Lipschitz C-UIEP.

Now any subset of M also has the collinearity property and so also has the

Lipschitz C-UIEP. Hence M has the Lipschitz C-IEP.

The following Theorem extends the result of Lancien and Randrianantoanina

[9] who proved that every finite-dimensional polyhedral space has the Lipschitz

C-IEP. Let us remark that the linear version of this result is due to Lindenstrauss

[11]: a finite-dimensional normed spaceX has the Lipschitz C-UILEP if and only

if X is polyhedral.

Theorem 6.6: Let X be a finite-dimensional normed space. Then X has the

Lipschitz C-UIEP if and only if X is polyhedral.
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In particular, if X is polyhedral then every subset of X has the Lipschitz

C-UIEP and X has the Lipschitz C-IEP.

Proof: If X is polyhedral then Theorem 6.5 and Theorem 6.4 give the conclu-

sion. Conversely if X has the Lipschitz C-UIEP, then (X,Y ) has the C-ILEP for

every normed space Y ⊃ X with dimY/X = 1 by Lemma 2.2. By the Corollary

to Theorem 7.5 of [11] we obtain that X is polyhedral.

The collinearity property is not necessary for a metric space M to have the

Lipschitz C-UIEP (since ℓ∞ has the Lipschitz C-UIEP). It is also not necessary

even if we require that every subset of M has the Lipschitz C-UIEP. This follows

from the following theorem.

Theorem 6.7: Let X be a strictly convex finite-dimensional normed space. Let

K be a closed subset of X such that λK ⊂ K for every λ ≥ 0 but K∩(−K) = ∅

(e.g. K is a proper closed cone). Then every subset of K has the Lipschitz

C-UIEP.

Proof: We use Theorem 5.3. Suppose K is embedded in a metric space M and

a ∈ M \ K. Assume that we have a pair of sequences (xn)∞n=1, (yn)∞n=1 in K

such that

d(a, xn) + d(a, yn) + ǫ < ‖xn − xk‖ + ‖yn − xk‖ 1 ≤ k ≤ n− 1

and

d(a, xn) + d(a, yn) + ǫ < ‖xn − yk‖ + ‖yn − yk‖ 1 ≤ k ≤ n− 1.

Since K has the Heine–Borel property the sequences (xn)∞n=1 and (yn)∞n=1

cannot have bounded subsequences. Therefore we have limn→∞ ‖xn‖ =

limn→∞ ‖yn‖ = ∞. By passing to a subsequence we can suppose that both

(xn/‖xn‖) and (yn/‖yn‖) are convergent to u, v respectively. We have ‖u‖ =

‖v‖ = 1 and u, v ∈ K. Now for 1 ≤ k ≤ n− 1, let x∗n,k ∈ X∗ be chosen so that

‖x∗n,k‖ = 1 and x∗n,k(xn −xk) = ‖xn −xk‖. Similarly chose y∗n,k with ‖y∗n,k‖ = 1

and y∗n,k(yn − xk) = ‖yn − xk‖. Thus

d(a, xn) + d(a, yn) + ǫ < x∗n,k(xn − xk) + y∗n,k(yn − xk) 1 ≤ k ≤ n− 1.

Hence

x∗n,k(xn) + y∗n,k(yn) ≤ ‖xn‖ + ‖yn‖ ≤ d(a, xn) + d(a, yn) + 2d(a, 0)

< x∗n,k(xn − xk) + y∗n,k(yn − xk) + 2d(a, 0),
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so that

x∗n,k(xk) + y∗n,k(xk) ≤ 2d(a, 0) k < n.

Now for fixed k let u∗k, v
∗
k be accumulation points of the sequences (x∗n,k)n>k

and (y∗n,k)n>k. Then u∗k(u) = 1 and v∗k(v) = 1 and

(u∗k + v∗k)(xk) ≤ 2d(a, 0) k = 1, 2, . . . .

Now let u∗ be an accumulation point of (u∗k)∞k=1 and v∗ an accumulation point

of (v∗k)∞k=1. As before u∗(u) = 1 and v∗(v) = 1. We also have, since

(u∗k + v∗k)(xk/‖xk‖) ≤ 2d(a, 0)‖xk‖
−1,

that

(u∗ + v∗)u ≤ 0.

This implies that v∗(u) = −1 and hence v∗(v − u) = 2 ≤ ‖v − u‖. By strict

convexity v = −u which is impossible since K ∩ (−K) = ∅.

Now consider the cone K ⊂ ℓn2 of all ξ = (ξ1, . . . , ξn) where ξj ≥ 0 for

1 ≤ j ≤ n. All subsets of K have the Lipschitz C-UIEP by Theorem 6.7. But ℓn2
fails to have the collinearity property by Theorem 6.4 so that there is a sequence

(xn)∞n=1 and ǫ > 0 so that no three points are ǫ-collinear. Infinitely many of the

(xn)∞n=1 must belong to one of the cones Kθ1,...,θn
= {ξ : θjξj ≥ 0, 1 ≤ j ≤ n}

for some choice of θj = ±1 whence it follows that K also fails the collinearity

property.

Theorem 6.8: M ⊕1 M has the Lipschitz C-IEP if and only if M has the

collinearity property.

Proof: If M has the collinearity property then M⊕1M also has the collinearity

property (Proposition 6.2) and hence the Lipschitz C-IEP (Theorem 6.5).

Now suppose M ⊕1 M has the Lipschitz C-IEP. Suppose ǫ > 0. Suppose

(xn)∞n=1 is any sequence in M . We consider the sequences in M ⊕1 M defined

by un = (xn, x1) and vn = (x1, xn). Let b = (x1, x1). By Theorem 5.2 (ii) we

can find a fixed element e = uj or e = vj and an infinite subset A of N so that

d(un, e) + d(vn, e) < d(un, b) + d(vn, b) + ǫ n ∈ A.

Hence

d(xn, xj) + d(xn, x1) + d(xj , x1) < 2d(xn, x1) + ǫ n ∈ N.
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This implies that

d(xn, xj) + d(xj , x1) < d(xn, x1) + ǫ n > j, n, j ∈ A

so that M has the collinearity property.

Example: It follows that if X is a finite-dimensional space which is not poly-

hedral then X ⊕1 X fails to have the Lipschitz C-IEP. Thus the 4-dimensional

space ℓ22 ⊕1 ℓ
2
2 fails to have the C-IEP; this example was given by Lancien and

Randrianantoanina.

It is however possible to give a 3-dimensional counter-example. Take a 2-

dimensional space E which is not polyhedral, and use the Corollary to Theorem

7.7 of [11] to create a 3-dimensional space X ⊃ E so that (X,E) fails the linear

C-IEP and hence also the Lipschitz C-IEP by Lemma 2.2.

7. Finite-dimensional normed spaces with the Lipschitz C-IEP

Although we have characterized finite-dimensional normed spaces with the Lip-

schitz C-UIEP, the case of the Lipschitz C-IEP is rather more subtle. We show

here that in addition to polyhedral spaces (as proved by Lancien and Randri-

anantoanina [9]) this property is enjoyed by spaces with a Gateaux smooth norm

and 2-dimensional spaces.

Suppose X is a finite-dimensional normed space, let DX be the set of all

x ∈ ∂BX so that the norm is Gateaux differentiable at x. The set DX is dense

in ∂BX . Let D∗
X be the set of x∗ ∈ X∗ with ‖x∗‖ = 1 and such that x∗(x) = 1

for some x ∈ DX . Let ∂sBX∗ be the closure of D∗
X . Then ∂sBX∗ is the minimal

closed boundary for X , i.e. the smallest closed subset G of BX∗ so that

‖x‖ = max{x∗(x) : x ∈ G}.

We shall say that X is quasi-smooth if

(QS1) If 0 6= x ∈ X the set {x∗ ∈ ∂sBX∗ : x∗(x) = ‖x‖} is finite.

(QS2) For every x∗0, x
∗
1 ∈ ∂sBX∗ with x∗1 6= x∗0 there is a neighborhood V of x∗0

so that if x∗ ∈ V and x is such that x∗(x) = ‖x‖ then x∗0(x) ≥ x∗1(x).

Let us explain condition (QS2). For x ∈ X define

px(y) = max{x∗(y) : x∗(x) = ‖x‖, x∗ ∈ ∂sBX∗}.

Lemma 7.1: Let X be a finite-dimensional normed space with property (QS1).

Then X satisfies (QS2) if and only if whenever (un)∞n=1 is a sequence in X
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converging to some u 6= 0 and (u∗n)∞n=1 is a sequence in ∂sBX∗ converging to

some u∗ and such that u∗n(un) = ‖un‖ for all n, then there exists N so that

pu(un) = u∗(un) n ≥ N.

Proof: First assume the condition of the lemma holds. If (QS2) fails for

some pair (x∗0, x
∗
1) we can find a sequence (u∗n) in ∂sBX∗ converging to x∗0

and a sequence (un) in ∂BX such that u∗n(un) = 1 and x∗0(un) < x∗1(un).

By passing to a subsequence we can suppose (un)∞n=1 converges to some u and

then x∗0(u) = 1 = x∗1(u). Hence pu(un) = x∗0(un) for n large enough, but

pu(un) ≥ x∗1(un).

For the converse direction suppose instead that we have (un)∞n=1 and (u∗n)∞n=1

as specified but u∗(un) < pu(un) for all n. Then by passing to a subsequence

and using (QS1) we can assume there exists v∗ 6= u∗ so that v∗ ∈ ∂sBX∗ ,

v∗(u) = ‖u‖ and pu(un) = v∗(un) for all n. Then the pair (u∗, v∗) violates

(QS2).

Proposition 7.2: Suppose X is a finite-dimensional normed space. Then X

is quasi-smooth if one of the following conditions holds:

(i) X is polyhedral;

(ii) X is Gateaux smooth;

(iii) dimX = 2.

Proof: If X is polyhedral then ∂sBX∗ is a finite set and the proof is trivial.

In case (ii), (QS1) is immediate. For (QS2) we argue that if (un)∞n=1 is a

convergent sequence in ∂BX , with limit u, and (u∗n)∞n=1 is a convergent sequence

in ∂sBX∗ with limit u∗ and if u∗n(un) = 1 then u∗ norms u and pu(x) = u∗(x)

so that Lemma 7.1 applies.

If dimX = 2 we must first show that (QS1) holds. Suppose u ∈ ∂BX

and u∗ ∈ ∂sBX∗ norms u. Pick any v linearly independent of u. There is a

sequence u∗n ∈ D∗
X and a sequence un = snu + tnv in DX with u∗n(un) = 1

and limn→∞ u∗n = u∗. We can suppose un converges to some w = su + tv

where s ≥ 0. The function f(t) = ‖u + tv‖ is convex. If t 6= 0 then u 6= w

then ‖tw + (1 − t)u‖ = 1 for 0 ≤ t ≤ 1 and hence u∗(v) is either the left or

right-derivative of f at 0. If t = 0 then s = 1 and the properties of convex

functions again show that u∗(v) is either the left- or right- derivative of f at 0.

This implies there are only two points in {u∗ ∈ ∂sBX∗ : u∗(u) = 1}.

We must also check (QS2); we again use Lemma 7.1. Again suppose (un) in

∂BX and (u∗n) in ∂sBX∗ satisfy u∗n(un) = 1 and converge to u, u∗ respectively. If
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u admits only one norming functional in ∂sBX∗ then there is nothing to prove.

Suppose it admits two, i.e. u∗ and w∗ 6= u∗. Defining v as before we see that

pu(su+ tv) = max(s+ tu∗(v), s+ tw∗(v)).

For convenience we assume u∗(v) > w∗(v) so that u∗(v) = f ′
+(0) and

w∗(v) = f ′
−(0) where f ′

+ and f ′
− denote the right- and left-derivatives. If

un = snu + tnv by the above reasoning u∗n(v) = snf
′
±(tns

−1
n ) Since sn → 1

and tn → 0 from properties of convex functions we must have tn ≥ 0 eventually

and then pu(un) = u∗(un).

Theorem 7.3: If X is quasi-smooth then X has the Lipschitz C-IEP.

Notice this gives a further proof of the Lancien-Randrianantoanina result

whenX is polyhedral but also establishes the result for the case when dimX = 2

or X is Gateaux smooth. One can also easily visualize other examples.

Proof: We will verify Theorem 5.2; we note that we can assume a = 0 in (ii).

Suppose for some ǫ > 0 we can find two sequences (xn)∞n=1, (yn)∞n=1 so that

‖xn‖ + ‖yn‖ < ‖xn − xk‖ + ‖yn − xk‖ − ǫ 1 ≤ k ≤ n− 1(7.1)

‖xn‖ + ‖yn‖ < ‖xn − yk‖ + ‖yn − yk‖ − ǫ 1 ≤ k ≤ n− 1.(7.2)

Our proof will in fact only use (7.1). We must have

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = ∞

(see the Remarks following Theorem 5.2).

By passing to subsequences we may suppose that ‖xn‖, ‖yn‖ > 0 and

lim
n→∞

xn

‖xn‖
= u, lim

n→∞

yn

‖yn‖
= v

where ‖u‖ = ‖v‖ = 1.

Let F be the (finite) set of u∗ ∈ ∂sBX∗ so that u∗(u) = 1. Let F0 be the

subset of F of all u∗ which are extreme in the convex hull of F . Define

pu(x) = max{u∗(x) : u∗ ∈ F} = max{u∗(x) : u∗ ∈ F0}.

We note that by passing to a further subsequence we can suppose that for

some fixed u∗0 ∈ F0 we have

u∗0(xk) = pu(xk) k = 1, 2, . . . .
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Let F1 = F \{u∗0}. Then it is clear that u∗0 is not in the convex hull of F1∪{0}.

Hence we can find a vector z ∈ X so that

u∗0(z) = 1 + max{u∗(z) : u∗ ∈ F1 ∪ {0}}.

Let x∗n,k be a norming functional in ∂sBX∗ for xn − xk, i.e. ‖x∗n,k‖ = 1 and

x∗n,k(xn − xk) = ‖xn − xk‖. Let y∗n,k be a norming functional in ∂sBX∗ for

yn − xk.

By passing to an appropriate subsequence we can suppose that

lim
n→∞

x∗n,k = x∗k, lim
n→∞

y∗n,k = y∗k,

It is clear that each x∗k norms u and each y∗k norms v and each belongs to

∂sBX∗ .

Now since X is quasi-smooth the sets

{x∗k : k = 1, 2, . . .} and {y∗k : k = 1, 2, . . .}

are finite and by passing to a further subsequence we can assume that they are

constant. Let us put x∗k = u∗1 for all k and y∗k = v∗ for all k.

We further have (from Lemma 7.1) that for each k there exists N0(k) so that

u∗1(xn − xk) = pu(xn − xk) n > N0(k).

We now may pass to a subsequence and further assume that

u∗1(xn − xk) = pu(xn − xk) n > k.

We also have

x∗n,k(xn) + y∗n,k(yn) < x∗n,k(xn − xk) + y∗n,k(yn − xk) − ǫ

which simplifies to

(x∗n,k + y∗n,k)(xk) < −ǫ.

Letting n→ ∞ we obtain

(u∗1 + v∗)(xk) ≤ −ǫ k = 1, 2, . . . .

Thus

(u∗1 + v∗)
( xk

‖xk‖

)

≤ 0

so that

(u∗1 + v∗)(u) ≤ 0.
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Hence v∗(u) = −1 and so −v∗ also norms u. It is clear that u∗1 +v∗ 6= 0 (so that

if X is Gateaux smooth we have a contradiction and the proof is complete).

In the general case we also have −v∗(xk) ≤ u∗0(xk) so that

(u∗1 − u∗0)(xk) ≤ −ǫ, k = 1, 2, . . . .

We also have

u∗1(xn − xk) = pu(xn − xk) ≥ u∗0(xn − xk) k < n.

Hence

(u∗1 − u∗0)(xn − xn−1) ≥ 0 n = 2, 3 . . . .

Thus the sequence (u∗1 − u∗0)(xk) is monotone increasing and bounded above.

We conclude that limk→∞(u∗1 − u∗0)(xk) exists. Let

δk = sup
n>k

(u∗1 − u∗0)(xn − xk) k = 1, 2, . . .

so that limk→∞ δk = 0.

For any n > k let us consider

wn,k = xn − xk + ((u∗1 − u∗0)(xn − xk))z + 2−nz.

Then

lim
n→∞

wn,k

‖wn,k‖
= u.

Recall that if u∗ 6= u∗0 and u∗ ∈ F then

u∗(z) ≤ u∗0(z) − 1.

Hence

u∗(wn,k) < 〈xn − xk, u
∗ − u∗1 + u∗0〉 + 〈xn − xk, u

∗
1 − u∗0〉u

∗
0(z) + 2−nu∗0(z)

≤ u∗0(wn,k).

Thus if w∗
n,k ∈ ∂sBX∗ norms wn,k we have (using quasi-smoothness, in par-

ticular Lemma 7.1)

lim
n→∞

w∗
n,k = u∗0.

Now appealing to (7.1)

‖xn‖ + ‖yn‖ ≤ ‖wn,k‖ + ‖wn,k − (xn − xk)‖ + ‖yn − xk‖ − ǫ
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and hence

w∗
n,k(xn − wn,k) + y∗n,k(xk) ≤ ‖wn,k − (xn − xk)‖ − ǫ

which reduces to

w∗
n,k(xk) + y∗n,k(xk) ≤ 2(2−n + δk)‖z‖ − ǫ.

Taking limits as n→ ∞ we have

(u∗0 + v∗)(xk) ≤ 2δk‖z‖ − ǫ.

However u∗0(xk) ≥ −v∗(xk) for all k so that

0 < ǫ ≤ 2δk‖z‖ k = 1, 2 . . . .

This contradiction proves the Theorem.

8. Hölder extensions

We will now consider a problem raised by Naor [14]. Suppose for a given Banach

space Y , M is a metric space with the Y -IEP. Naor asks if for 0 < α < 1 it

is always true that for any subset E of M and any α-Hölder continuous map

F0: E → Y satisfying

‖F0(x) − F0(y)‖ ≤ d(x, y)α x, y ∈ E

one has an extension F : M → Y with

‖F (x) − F (y)‖ ≤ d(x, y)α x, y ∈M.

Naor conjectures that is false for arbitrary Y but true for Y a Hilbert space. We

shall resolve this question for c0 and C(K)-spaces where K is compact metric

and, in particular, show that it is false in the latter case.

If M is a metric space and 0 < α < 1 we denote by Mα the metric space

(M,dα). Naor’s question is then whether Mα has Lipschitz Y -IEP whenever M

has the Lipschitz Y -IEP and 0 < α < 1.

Proposition 8.1: Suppose M has the Lipschitz c0-AIEP. Then for every 0 <

α < 1, Mα has the Lipschitz c0-IEP.

Proof: If not there exists 0 < α < 1, ǫ > 0, a ∈ M and a sequence (xn)∞n=1

such that

d(xn, a)
α + ǫ < d(xn, xj)

α j < n.
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Note this implies that (xn)∞n=1 is metrically bounded. Indeed, if not, by passing

to a subsequence we can assume that d(xn, a) → ∞. But then for every j we

have

lim
n→∞

(d(xn, xj)
α − d(xn, a)

α) = 0

which is impossible. However if (xn)∞n=1 is metrically bounded then we deduce

the existence of η > 0 so that

d(xn, a) + η < d(xn, xj) j < n

which contradicts the fact that M has Lipschitz c0-AIEP (Theorem 5.1).

Proposition 8.2: Suppose M is a metric space and 0 < α < 1. Then Mα has

the Lipschitz C-IEP (respectively, c0-IEP) if and only if Mα has the Lipschitz

C-AIEP (respectively, c0-AIEP).

Proof: Suppose Mα has Lipschitz C-AIEP but not Lipschitz C-IEP. Then, by

Theorem 5.2 we can find a ∈M , ǫ > 0 and two sequences (xn)∞n=1 and (yn)∞n=1

such that

(8.1) d(xn, a)
α + d(yn, a)

α + ǫ < d(xn, xj)
α + d(yn, xj)

α j < n

and

(8.2) d(xn, a)
α + d(yn, a)

α + ǫ < d(xn, yj)
α + d(yn, yj)

α j < n.

Let us suppose one of (xn)∞n=1, (yn)∞n=1, say (xn)∞n=1, is not metrically bounded;

by passing to a subsequence we can suppose d(xn, a) → ∞ and, as in the

preceding Proposition,

lim
n→∞

(d(xn, yj)
α − d(xn, a)

α) = 0 j < n.

It is thus possible to pass to a further subsequence such that

d(yn, a)
α +

1

2
ǫ < d(yn, yj)

α j < n.

If (yn)∞n=1 is metrically bounded this contradicts the fact that Mα has the C-

AIEP (and hence the c0-AIEP). If it is not metrically bounded then we can

apply a similar argument to the above to deduce that

lim inf
n→∞

(d(yn, yj)
α − d(yn, a)

α) = 0

and hence get a contradiction.

If both (xn)∞n=1 and (yn)∞n=1 are metrically bounded then we have a contra-

diction to the fact that Mα has Lipschitz C-AIEP.
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Proposition 8.3: Suppose M has the Heine-Borel property. Then for every

0 < α < 1, Mα has Lipschitz C-IEP.

Proof: This follows from Propositions 8.2 and Proposition 4.5.

Note that this Proposition implies that for any finite-dimensional normed

space X we have isometric Hölder continuous extensions into C(K)-spaces; this

result is due to Lancien and Randrianantoanina [9].

We recall (see [1]) that a metric space M is stable if for any pair of metrically

bounded sequences (xn)∞n=1 and (yn)∞n=1 we have

lim
m→∞

lim
n→∞

d(xm, yn) = lim
n→∞

lim
m→∞

d(xm, yn)

whenever all the limits exist. Any subset of an Lp-space when 1 ≤ p < ∞ is

stable.

Theorem 8.4: Let M be a stable metric space with the Lipschitz C-AIEP;

then for every 0 < α < 1, Mα has the Lipschitz C-IEP.

Proof: Suppose Mα fails the Lipschitz C-IEP for some 0 < α < 1. Then it also

fails Lipschitz C-AIEP by Proposition 8.2. Hence by Theorem 5.2 we can find

a ∈M , ǫ > 0 and metrically bounded sequences (xn)∞n=1 and (yn)∞n=1 such that

(8.1) and (8.2) hold.

We may suppose by passing to further subsequences that the following limits

exist:
lim

n→∞
d(xn, a) = δxa,

lim
n→∞

d(yn, a) = δya,

lim
n→∞

lim
m→∞

d(xm, xn) = δxx,

lim
n→∞

lim
m→∞

d(ym, yn) = δyy,

lim
n→∞

lim
m→∞

d(xm, yn) = δxy,

lim
n→∞

lim
m→∞

d(ym, xn) = δyx.

Stability of M implies that δxy = δyx.

Since M has the Lipschitz C-AIEP it follows that either

(8.3) δxx + δyx ≤ δxa + δya

or

(8.4) δyy + δxy ≤ δxa + δya.
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Let us assume the former.

By (8.1) we have

(8.5) δα
xa + δα

ya < δα
xx + δα

yx.

We also note that since M also has Lipschitz c0-AIEP we also have

(8.6) δxx ≤ δxa, δyy ≤ δya.

Combining (8.5) and (8.3) and using the fact that 0 < α < 1 it is clear

that one of {δxa, δya} is greater than or equal to both δxx and δyx and one is

less than or equal to both. From (8.6) it follows that we cannot have δxa ≤

min(δxx, δyx) as this would imply that δxx = δxa and render (8.5) and (8.3)

impossible simultaneously. Hence

δya ≤ min(δxx, δyx) ≤ max(δxx, δyx) ≤ δxa.

But now by (8.6) we have

δyy ≤ δya ≤ δxx.

By stability this means that (8.4) also holds, which implies by similar reasoning

that we also have:

δxa ≤ min(δyy, δxy) ≤ max(δyy, δxy) ≤ δya.

Thus δxa = δxx = δyx = δya which is absurd.

It is now possible to give an example to show that Naor’s problem has a

negative solution.

Example: There is a metric space M with the property that M has Lipschitz

C-IEP but Mα fails Lipschitz C-AIEP for every 0 < α < 1.

We defined M to be subset of Z2 consisting of all pairs (m,n) with m ∈ N

and n = 0, 1 together with the origin (0, 0). Let us define a metric on M by

d((m1, 0), (m2, 0)) = 3 m1 6= m2,

d((m1, 1), (m2, 1)) = 2 m1 6= m2,

d((m1, 0), (m2, 1)) = 3 m1 ≤ m2,

d((m1, 0), (m2, 1)) = 5 m1 > m2,

d((0, 0), (m, 0)) = 4 m ∈ N

d((0, 0), (m, 1)) = 2 m ∈ N.
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We first need to verify that M has the Lipschitz C-IEP. Indeed if not we can

suppose the existence of a ∈ M , ǫ > 0 and sequences (xn)∞n=1, (yn)∞n=1 so that

(5.2) and (5.3 hold for λ = 1). By passing to a subsequence we can suppose

that (0, 0) is not in either sequence and the second co-ordinate of both sequences

is constant. We then have (taking into account the fact that all distances are

integers),

d(xn, a) + d(yn, a) + 1 ≤ d(xn, xj) + d(yn, xj) j < n

and

d(xn, a) + d(yn, a) + 1 ≤ d(xn, yj) + d(yn, yj) j < n.

It is then simple but tedious to check cases. If the second co-ordinate for both

sequences is 0 the right-hand sides tend to 6 as n → ∞ but the left-hand side

tends to a limit no less than 7. If the second co-ordinate is 1 for both sequences

the right-hand sides tend to 4 but the left-hand side tends to a limit no less than

5. If say the (xn)∞n=1 all have second co-ordinate 0 and the (yn)∞n=1 all have

second co-ordinate 1 the right-hand limits are 6 and 7. However the left-hand

limits are both at least 7. Thus M has the Lipschitz C-IEP.

Let us check however that for every 0 < α < 1, Mα fails Lipschitz C-IEP.

Indeed let a = (0, 0), xn = (n, 0) and yn = (n, 1). Then

d(xn, a)
α + d(yn, a)

α = 2α + 4α n ∈ N

d(xn, xj)
α + d(yn, xj)

α = 2.3α > 2α + 4α j < n

and

d(xn, yj)
α + d(yn, yj)

α = 2α + 5α > 2α + 4α j < n.
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