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ABSTRACT

We show that if K is a compact metric space then C(K) is a 2-absolute
Lipschitz retract. We then study the best Lipschitz extension constants
for maps into C(K) from a given metric space M, extending recent re-
sults of Lancien and Randrianantoanina. They showed that a finite-
dimensional normed space which is polyhedral has the isometric exten-
sion property for C(K)-spaces; here we show that the same result holds
for spaces with Gateaux smooth norm or of dimension two; a three-
dimensional counterexample is also given. We also show that X is poly-
hedral if and only if every subset E of X has the universal isometric
extension property for C(K)-spaces. We also answer a question of Naor
on the extension of Holder continuous maps.

1. Introduction

Lipschitz extension of maps into C(K)-spaces have been studied by a number
of authors. The first results in this field are due to Lindenstrauss [10]. Linden-
strauss showed that if K is a compact metric space, then C(K) is an absolute
Lipschitz retract. This implies that for a suitable constant X\ if M is a metric
space and F is a closed subset of M then every Lipschitz map Fy: E — C(K) has
an extension F: M — C(K) with Lipschitz constant Lip(F) < ALip(Fp). Lin-
denstrauss’s technique gave an estimate of A < 20. However ¢g is a 2-absolute
Lipschitz retract, so that the corresponding result for ¢y works with constant 2.
Note that, for K nonmetrizable one gets a similar extension result when E' is
separable. See the recent book of Benyamini and Lindenstrauss [1].
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Recently Lancien and Randrianantoanina [9] considered a related problem.
They asked for conditions on M which guarantee extensions with A = 1 (iso-
metric case) or A = 1+ € (almost isometric case). They restricted M = X to be
a finite-dimensional normed space and showed that for the co-case one always
has isometric extensions. However, for the C(K)-case they showed that only
(1 + €)-extensions are obtained in general and gave a four-dimensional coun-
terexample to the isometric version. They showed, however, that for polyhedral
spaces one always has an isometric extension.

Our first result in this paper improves Lindenstrauss’s 1964 estimate by show-
ing that C(K) is a 2-absolute retract for every compact metric space K.

We then develop necessary and sufficient conditions on a subset E of a metric
space M for the existence of Lipschitz extensions of maps into ¢y or C(K) with
prescribed Lipschitz constant (Theorems 4.1 and 4.2). These conditions permit
us to determine the best constant for extensions, in principle. They also reveal
a phenomenon already observed in [9]; that one can reduce to the case when
K is the one point compactification of N (i.e. C(K) = ¢). We then apply these
conditions to the problems considered by Lancien and Randrianantoanina.

Let us introduce some definitions. We say that (E, M) has the C-IEP (C-
isometric extension property) if for every Lipshitz map Fy: E — C(K) (K
compact metric) there is an extension F: M — C(K) with Lip(F) = Lip(Fp).
We say that M has the C-IEP if (E, M) has the C-IEP for every subset E of
M and the C-UIEP (universal isometric extension property) if (M, M')
has the C-IEP, whenever M C M’.

Lancien and Randrianantoanina [9] showed that a finite-dimensional normed
space X which is polyhedral has the C-IEP; we give a different argument for this
result and we extend it to show it also has the C-UIEP (and hence so does every
subset). We then show that X is polyhedral if and only if it has the C-UIEP and
the C-IEP. To establish this we introduce a natural property for metric spaces
which implies both C-UIEP and C-IEP. We say that a metric space M has the
collinearity property of given € > 0 and an infinite subset A of M there are
three points z1, z2,x3 € A such that

d(Il,l‘g) > d(l‘l,l‘g) + d(IQ,ZL‘g) — €.

For finite-dimensional normed spaces this property is equivalent to being poly-
hedral.

We then show that there are many other examples of finite-dimensional
normed spaces with the C-IEP, including any space with a Gateaux smooth



Vol. 162, 2007 EXTENDING LIPSCHITZ MAPS INTO C(K)-SPACES 277

norm. We also show that any 2-dimensional space has the C-IEP, and show
that a result of Lindenstrauss [11] implies the existence of a 3-dimensional space
failing C-IEP.

We conclude by considering Holder extensions and give an example which
answers a question of Naor [14]. This is an example of a metric space M with
the C-IEP but such that if 0 < oo < 1 the space M* = (M, d*) fails the C-IEP.
This means that isometric extensions are always possible for Lipschitz maps but
not for Holder continuous maps.

2. Preliminaries

Let (M, d) be a metric space. A subset A of M is called metrically bounded
if for some (and hence for every) x € M we have sup,¢ 4 d(a,z) < co. We will
say that M has the Heine-Borel property if every metrically bounded subset
is precompact (or totally bounded); this is equivalent to requiring that every
metrically bounded sequence has a Cauchy subsequence. If M is complete it
implies that M is locally compact but the converse is false.

Suppose (Y,d1) is another metric space and F: M — Y is a Lipschitz map
we denote by Lip(F') the Lipschitz constant of F, i.e., the least constant A such
that

dy(F(x1), F(22)) < Md(x1,22) x1,22 € M.

Suppose A C M. We say that the pair (A4,M) has the Lipschitz
(A, Y)-extension property (Lipschitz (\,Y)-EP) if for every Lipschitz map
Fy: A — Y there is a Lipschitz extension F: M — Y with Lip(F) < ALip(Fp).
In particular we say (A, M) has the Lipschitz isometric Y-extension prop-
erty (Lipschitz Y-IEP) if it has the (1,Y)-EP, and the Lipschitz almost
isometric Y-extension property (Lipschitz Y-AIEP) if it has the (\,Y)-
EP for every A > 1.

We also say that M has the Lipschitz ()\,Y)-extension property (Lips-
chitz (A, Y)-EP) [respectively, Lipschitz isometric Y-extension property,
(Y-IEP); respectively Lipschitz almost isometric Y-extension property
(Lipschitz Y-AIEP)] if for for every subset A of M the pair (A, M) has the
Lipschitz (A, Y)-EP [respectively, Lipschitz Y-IEP; respectively, Lipschitz Y-
ATEP]. We will be especially interested in the cases when Y is the Banach space
¢p or C(K) where K is a compact metric space.

Similarly we will say that M has the Lipschitz universal (), Y)-extension
property (Lipschitz (A, Y)-UEP) if whenever M is embedded in a metric
space M’ then the pair (M, M’) has the Lipschitz (), Y)-EP. We similarly define
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the Lipschitz universal isometric and Lipschitz almost isometric Y-extension
properties (Lipschitz Y-UIEP and Lipschitz Y-UAIEP).

It is sometimes natural to consider combinations of these properties. We will
need the following

PROPOSITION 2.1: Suppose M,Y are metric spaces and A > 1. The following
are equivalent:

(i) M has the Lipschitz (A, Y)-EP and the Lipschitz (A, Y)-UEP.

(ii) Every subset of M has the Lipschitz (A, Y)-UEP.

Proof: (ii) = (i) is obvious. For (i)= (ii) we observe that it suffices to argue
that if F is a subset of M and FE is simultaneously isometrically embedded in
some other metric space (M’,d’), we can form a pseudo-metric on M U M’ by
defining

d(z,2') = inf{d(z,e) +d'(e,2") :e € E} z€ M\ E,2’ € M'\ E.

If (ii) holds it follows that we can extend any Lipschitz map Fyo: E — Y to
F: M UM — Y with Lip(¥) < ALip(Fp) and then restrict it to M’. [ |

A is called a A-Lipschitz retract of M if (A, M) has the (A, Y)-extension
property for every choice of Y. This is equivalent to the requirement that there
is a Lipschitz retract r: M — A with Lip(r) < A. (r is a retract if r(a) = a
for a € A.) Y is called a A-absolute Lipschitz retract if every pair (A, M)
has the (A, Y)-EP. It is well-known that R is a 1-absolute Lipschitz retract and
hence that every (real) Banach space £ (S) is a 1-absolute Lipschitz retract. In
contrast to the linear theory it is however true that cq is a 2-absolute Lipschitz
retract ([10], [1]). It is also known that any C(K)-space with K compact metric
is a 20-absolute Lipschitz retract ([10], [1]). We will improve this estimate
shortly.

Now suppose X,Y are Banach spaces and F is a closed subspace of X. We
say that (E,X) has the linear (), Y)-extension property (linear (\,Y)-
EP) if for every bounded linear operator Tp: E — Y there is a bounded linear
extension T: X — Y with ||T|| < A||To||. We would like to take the opportunity
to relate the linear and nonlinear theories by the following simple Lemma:

LEMMA 2.2: Suppose X and Y are Banach spaces and suppose E is a closed
subspace of X of co-dimension one. Suppose (E, X) has the Lipschitz (A, Y)-EP.
Then (E, X) has the linear (\,Y)-EP.

Proof:  Suppose Ty: E — Y is a bounded linear operator. Then there is a
Lipschitz extension F: X — Y with Lip(F) < A||To||. Pick any 2o € X \ E and
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extend Tp to a linear map T: X — Y such that Tzg = F(zp). Then for any
ec FE
1T (e + zo)[| = [[F(wo) — F(—e)|| < Al|Toll[|zo + el

and it follows trivially that ||T|| < A||To]. |

Finally let us note that if M = (M,d) is a metric space, then M“ denotes
the metric space (M,d*) for 0 < a < 1. If M; = (M;,d;) for j =1,2,...,n are
metric spaces then (Z?Zl M;)e, = My &1 --- @1 M, denotes the metric space
My x -+ x M, with the metric

n

(@)=, (W3)5=1) = > dj (5, 95)

j=1

and (Z?Zl M), = My @6 - - - Doo M, denotes the metric space My X - - - X M,
with the metric

d((z5)i=1, (y;)j=1) = max dj(xj,y;)-

3. C(K)-extensions

We first state a simple well-known consequence of the classical Miljutin Lemma.
We denote by A the Cantor set {—1, +1}.

ProrosIiTION 3.1: Let K be any compact metric space. Then there exist pos-
itive contractive operators S: C(K) — C(A) and R: C(A) — C(K) such that
R1 = 1,51 =1 and RS = IC(K)-

Proof: K can be embedded into the Hilbert cube [0,1]N. Let ¢: K — [0, 1]
be such an embedding. A theorem of Borsuk [2] implies that there is a positive
contractive operator A: C(K) — C([0,1]N) with A1 = 1 and such that (Af)op =
f. On the other hand, Miljutin [13] shows that there is a continuous surjection
7: A — [0,1]Y and a positive contractive operator B: C(A) — C([0, 1]V) so that
B(fom)=f. Now define Sf = (Af) om and Rf = (Bf) o . |

Let K be a compact Hausdorfl space. We let ¢, (K) be the metric space of
all bounded functions on K with the usual sup norm. Let U(K) and L(K) be
respectively the subsets of o, (K) of all upper-semi-continuous functions and of
all lower-semi-continuous functions. Thus, C(K) =U(K) N L(K).

Now let us specialize to the case of the Cantor set. We define S(A) to be
the subset of U(A) Boo L(A) consisting of all pairs (u,v) such that v < v. Let
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diag S(A) = {(f, f) : f € C(A)} to be the canonical image of C(A) in S(A). We
also define a partial order on S(A) by (u1,v1) =X (u2,v2) if ug > ug and vy < vs.

THEOREM 3.2: There is a 1-Lipschitz retract §: S(A) — diag S(A) such that
0(u,v) = (u,v) for all (u,v) € S(A).
Proof: Let V,, be the family of 2" clopen sets of the form

By = {5 = (50)1 1 55 = 1,1 < j < m).

Let C,,,(A) be the subset of C(A) of all functions constant on each set A € V,,;
this set is isometric to £2 . For each h € o (K) define

amh = Z (igf h)xa.
A€V,

Thus o, loo(A) — Cp(A) is a 1-Lipschitz map.
Next, let A,,, be defined for m =1,2,..., by
A = {(u,v) € S(A) : v > u}.

LEMMA 3.3: There is a 1-Lipschitz map .,: S(A) — S(A) such that:
(i) v is a retraction of A,, onto diag S(A) N A,,.
(ii) Ym(u,v) = (u,v) for all (u,v) € S(A).
(iii) If n > m then ¥, (A,) C A,.

Note here that diag S(A) N Ay, = {(f, f) : f € Cn(A)}.
Proof of the Lemma: Let us define oy, S(A) — Cpp(A) by

o) = 0 (! 4 max( = o o 0 = ).

Here the infimum is taken pointwise, and it is clear that o,, is a 1-Lipschitz
map. Note that for all (v/,v’) € A, we have

QamU < anbvl + ||U - U/HOO

and

u<u' 4 flu— oo < amt’ + flu—ulo

so that we have the properties:

(3.1) om(u,v) > max(u, o) (u,v) € S(A).
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and
(3.2) Om(u,v) = amv  (u,v) € Ap,.

Similarly, we define 7,,,: S(A) — Cn(A) by

Tm(u,v) = sup (v’ — max([lu — v’ [[v = v'[|0))-
(u,w)EAM,

Then 7, is also 1-Lipschitz and we have

(3.3) Tm (U, ) < v (u,v) € S(A)
and
(3.4) Tm (U, 0) = amv (U, v) € Ap,.

Thus o, and 7, are simply the maximal and minimal 1-Lipschitz extensions
of the map (u,v) — a,v from A, into C,, (A).
Define

Y (u,v) = (max(u, Tm (4, v)), min(v, o (u,v)))  (u,v) € S(A).

The first component is clearly in ¢(A) and the second component is in £(A).
Furthermore, we have by (3.1) and (3.3), that

max(u, T (u, v)) < min(v, o, (4, v))).

Hence v, maps S(A) to itself and (ii) holds.
If (u,v) € A, where n > m then o,,(u,v) and 7, (u,v) are constant on each
A €YV,. Hence,

o (min(v, o, (u, v)) = min(a,v, o4, (u, v)) > max(u, 7, (u, v)).

Thus if n > m we have 9., (A,) C A, i.e., (iii) holds.
We also have

| max(u, 7 (u, v)) — max(u', 7, (v, ")) | < max(|ju — u'||oo, || — V|| 00)
and
| min(v, oy, (u,v)) — min(v', oy, (v, 0"))| < max(||u — v’ oo, [|[v — V'] )

so that ), is 1-Lipschitz.
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If (u,v) € A, then ¥, (u,v) = (amv, anv) so that (i) holds. |

To complete the proof of the theorem, we will show that

eA(U,’U) = lim wnb o ’(/}’m—l ©---0 "l}l(uﬂ U)

m—00

defines the required map. Notice that the right-hand side converges and is
eventually constant if (u,v) € J,,~; Am. To prove pointwise convergence for
all (u, v) it will suffice (since all the maps are 1-Lipschitz) to show that Ups1 Am
is dense in S(A). In fact, the set of (u,v) so that inf(v —u) > 0 is contained in
the union. Indeed, a,,,v — u is an increasing sequence of lower-semi-continuous
functions which converges pointwise to v — u. By Dini’s theorem there exists m
so that a;v —u > 0 everywhere i.e. (u,v) € Ay,. Since the set of (u,v) with
inf(v —u) > 0 is trivially dense we have convergence.

Obviously 0a is contractive and 0a(u,v) =< (u,v). Furthermore since
U,,>1 Am is mapped into diag S(A) it is clear that 6 satisfies all our con-
ditions. |

The following theorem will be basic for our future considerations:

THEOREM 3.4: Let K be a compact metric space and M any metric space.
Suppose F;: M — L(K) and F,: M — U(K) are two Lipschitz maps such that

F.(x) < Fi(z) =€ M.
Then there is a Lipschitz map F: M — C(K) such that
F.(2) <F(z)<F(x) zeM
and Lip(f) < max(Lip(F}), Lip(F,)).

Proof: Let us prove this for the special case when K = A. Indeed in this case
we simply define F'(z) by (F(x), F(x)) = 0a(Fu(x), Fi(x)), where 0 is given
by Theorem 3.2.

Now let K be an arbitrary compact metric space. Let R, S be the operators
given by Proposition 3.1. We can regard U(K) and L(K) as subsets of C(K)**
via the formula

)= [ £ ne M.

Assume the result is known for A. Then given F,, F; as above we define G, =
S**F, and G; = S**F;. We claim that if z € M, G,(z) € U(A). Indeed, take
any bounded sequence (f,)52; in C(K) so that f(t) | Fyu(x)(t) for ¢t € K. Then
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Sfa(t) | g(t) for some g € U(A). However it is clear that g = S**F,(z) since
for any u € M(A) we have

/gdu: nllrrgo/andu = /Fu(x)d(S*u).

Similarly we can argue that G;(xz) € L(A). Clearly, Lip(G,) < Lip(F,) and
Lip(G;) < Lip(F;). It then follows we can find a Lipschitz map G: M — C(A)
with

Gu(z) <G(x) <Gi(z) zeM

and Lip(G) < max(Lip(F,),Lip(F})). Define F(z) = R(G(z)) and we are
done. |

The following theorem improves the result of Lindenstrauss [10], who proved
the same result with constant 20. He also obtained the constant 2 but only for
extending maps to finitely many additional points.

THEOREM 3.5: If K is a compact metric space, then C(K) is a 2-absolute
Lipschitz retract.

Proof: Tt is enough to produce a 2-Lipschitz retract from £ (K) onto C(K).
For any f € £ (K), define Lf, U f to be its lower-semi-continuous and upper-

semi-continuous regularizations i.e.,

Lf(s):ligriiglff(t), Uf(s) =limsup f(t) se€ K.

t—s

Then Lip(L), Lip(U) = 1. Now Lf < f < Uf and in fact
Uf < Lf+2d(f,C(K)).
Hence, if we define
Fu(f)=Uf—d(f,C(K)), F(f)=Lf+d(f C(K)),

then Lip(F,),Lip(F;) < 2 and the hypotheses of Theorem 3.4 are satisfied.
Hence we obtain a Lipschitz map F: £o(K) — C(K) with Lip(F) < 2 and

Uf—d(f,C(K)) < F(f) < Lf +d(f,C(K)).

Clearly F' is our desired Lipschitz retract. |
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4. A criterion for the existence of extensions

In this section we develop criteria to determine whether (E, M) has the (A, ¢g)-
extension property or the (A, C(K))-extension property. This is based on ideas
in [9].

THEOREM 4.1: Suppose M is a metric space and E is a separable subset of M.
Then the following statements are equivalent:
(i) (E, M) has the Lipschitz (A, co)-EP.
(ii) For every a € M \ E, every Lipschitz map Fy: E — ¢y has an extension
F: EU{a} — ¢p with Lip(F) < ALip(Fp).
(i) Ifa € M \ E and € > 0, then there is a finite subset {e1,...,e,} of E so
that:
(4.1) min d(ej,z) < Ad(a,z) +¢ z€E.
1<j<n
(iv) Ifa € M \ E and € > 0 then for every sequence (x1)3>, in E there is an
infinite subset Ml of N and e € E so that

(4.2) dle,xp) < Md(a,z) +€ ke M.

The implications (iii) = (iv) = (i) = (ii) hold without the assumption of
separability of E.

Proof: (i) = (ii) is obvious.

Let us prove (ii) = (iii). Suppose (a,€) are chosen so that (iii) fails. Let
us pick any sequence {x2,-1}2; dense in E. Then pick a further sequence
(221,)22, inductively so that

M(a,zo,) +€ < 15}22%71 d(zj, ).

Define Fy: E — c¢g by

Fy(z) = (_ min d(z,zk))oo

1§k§n n=1"
Suppose Fy has an extension F to E U {a} with Lip(F) < ALip(Fp). Let
F(a) = (£,)22,. Then for every n

§2n71 > 1SJI'I§1121711*1 d(x2na ZL']') - )\d(a’a 1‘2n) > €

contrary to assumption.
(iii) = (iv) is obvious.
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We next prove (iii) = (ii). (This does not require separability of E). Suppose
Fy: E — cg is a Lipschitz function with Lip(Fy) = 1. Let Fo(z) = (on(2))52,.
Then Lip(¢n(z)) < 1. For any a € M we define

gn(a) = inf (pn(z) + Ad(z, a))

zeFR

and

fin(a) = sup(on (2) = Ad(@, a)).

Then g,(a) > h,(a) and Lip(gy), Lip(h,) < A. If we define

hn(a) if hp(a) >0
fu(a) =9 gn(a) if gn(a) <0
0 otherwise,

then f, is also Lipschitz and Lip(f,) < A. We define F(x) = (fn(x))22,.
Clearly F(x) = Fy(z) if x € E and F maps into £o.. We need only check that
F has range in cg.

Suppose a ¢ E. If F(a) is not in ¢g we can find an infinite subset M of N and
€ > 0 so that either

(4.3) fula) >2¢, neM
or
(4.4) fn(a) < —2¢, ne€M.

In the former case (4.3) we have f,,(a) = hy(a) for n € M. Hence, there exist
(Zn)nem with z, € E and

on(xn) — Ad(zpn,a) >2¢ n e M.

Now by (iv) we pass to a further subsequence J C M so that for some e € E we
have

d(e,xn) < Md(a,zn) +€ n €.

Thus
on(e) > on(tn) — d(@n,e) > nej

which gives a contradiction since lim,,_,« ¢n(€) = 0. The treatment of the case
of (4.4) is similar. Hence F(a) € co. |
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THEOREM 4.2: Let M be a metric space and suppose E is a separable subset
of M. The following conditions are equivalent:
(i) (E, M) has the Lipschitz (A,C(K))-EP for every compact metric space K.

(ii) (E, M) has the Lipschitz (A, c)-EP.

(iil) If K is a compact metric space and Fy: E — ¢ is a Lipschitz map and
a € M\ E, then there is an extension F: EU {a} — ¢ with Lip(F') <
ALip(Fp).

(iv) Ifa € M\ E and € > 0, there is a finite set {ey1,...,e,} C E such that for
any x,y € K

(4.5) min (d(ej,z) +d(ej,y)) < Md(a,z) + d(a,y)) +€ z,y € E.

1<j<n

(v) Ifa € M\ E and (x,)22; and (y, )22, are two sequences in F, there exists
e € E and an infinite subset M of N so that

(4.6) de,xy) +d(e,yn) < Ad(a,zn) + d(a,yn)) +€ neN.

The implications (iv) = (v) = (i) = (ii) = (iii) hold without the assump-
tion of separability of E.

Proof: (i) = (ii) = (iii) are clear. Let us prove (iii) = (iv) (this requires
separability of E). Let (e,)?2; be any dense sequence in E. If (iv) fails for
some € > 0 we can construct sequences ()5 ; and (y,)52; in E so that

Md(a, zp) + d(a,yn)) + € < d(xj,zn) + d(zj,yn) j<n
Md(a, zy) + d(a,ypn)) + € < d(yj, n) + d(yj,yn) 7 <n.

and
(4.9) Md(a,zn) + d(a,yn)) + € < d(ej,xn) +d(ej,yn) J <n.

We note that taking a subsequence, since E is separable, we can suppose
that limy_ o (d(e, xx) — d(a, zx)) exists for all e € E. We proceed by defining a
sequence of functions f,: E — R. We first set:

fon—1(z) = d(z,z,) —d(a,zy,) n=12,....

Obviously Lip(fan—1) = 1. We then define ¢, on the set E, = {zx}}_, U
{uktioy Ulekrti—y by

@n(zj) = f2n71(1'j)7 ‘Pn(yj) = f2n71(yj) Jj<n
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and
on(ej) = fon—1(e;) J<mn,
but
on(xn) = fon—1(zn) + Md(Tn,a) + d(yn,a)) — d(zp,yn) + €
and

(pn(yn) = f2n—1(yn) + )\(d(l‘na a) + d(y’ru a)) - d(-rn; yn) + €.

We then claim that Lip(¢,) < 1. Indeed, it suffices to estimate ¢, (w) — @, (2),
when w =z, or w =y, and z € {2 }7Z] U{yr}?Z] U{ex}?_,. In these case

Pn(w) = on(2) > fon—1(w) = fan-1(2) = —d(w, 2)
but, using (4.7), (4.8) and (4.9), we get
Pn(w) — pn(2) < d(w,zn) + d(Yn, 2) — d(Tn, yn) < d(w, 2)

by considering the cases w = x,, and w = y,. Now let fs, be any 1-Lipschitz
extension of ¢, to E.
Let Fo(x) = (fn(z))2 Then Fy: E — c is 1-Lipschitz. Let F(z) =

n=1"*
(9n(2))52; be any extension to M with Lipschitz constant at most A\. Then

g2n(a) Z f2n(yn) - Ad(aa yn)
and
gon—1(a) < fon—1(zn) + Ad(a, ).
Thus
gon(a) — gan—1(a) > €

for every n which contradicts the fact that F' maps into c.

(iv) = (v) is immediate. Let us conclude by proving (v) = (i). Suppose E is a
nonempty subset of M and Fy: E — C(K) is a Lipschitz map with Lip(Fp) < 1.
Let us define G, H: M — (oo (K) and H: M — (o (K) by

G(z) = inf{Fo(e) + Ad(e,z) : e € E}

and
H(z) = sup{Fp(e) — Ad(e,z) : e € E}.

Then Lip(G),Lip(H) < A and H < G. We now define

F.(x)(s) =limsup H(z)(t) se€ K,z e M

t—s
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and
Fi(x)(s) = 1i£nipr($)(t) reK,zeM.

Thus F,(z) is the upper-semi-continuous regularization of H(x) and F(z) is the
lower-semi-continuous regularization of G(z). It is clear that F,: M — U(K),
Fi: M — L(K) satisfy Lip(Fy,),Lip(F;) < X and Fy(e) = Fi(e) = Fy(e) for
ec k.

We now need to show that F,(a) < Fj(a) for a ¢ E. Suppose on the contrary
that Fy(a)(s) > Fi(a)(s) + 2¢ for some a € M, s € K and € > 0. Then there
exist sequences (s,)%2 1, (s1,)5%; in K with s,, s, — s and H(s,) > G(s},) + 2e.
Hence there exist sequences (z,)5; and (y,)52; in E so that

Fo(yn)(sh,) — Ad(a,yn) > Fo(xn)(sn) + Md(a,z,) +2¢ neN.
Now using (v) we may find e € E and an infinite subset M of N so that
d(e, wn) + d(e,yn) < Ad(a, n) +d(a,yn)) +€ n €M,

Let Fy(e) = f € C(K). Then Fy(yn) < f +d(e,yn) and Fo(zy) > f — d(e, xy).
Thus

f(siz) - f(Sn) > )‘(d(aa yn) + d(aa zn)) - (d(ea zn) + d(e; yn)) +2¢>€¢ neM

This contradicts the continuity of f for large n.

Thus Fy(a) < Fj(a) and by Theorem 3.4 we can find a Lipschitz function
F: M — C(K) with Lip(F) < A and F,, < F < Fj (so that F is the desired
extension). |

In view of the equivalence of (i) and (ii) above we say that (E, M) has the
Lipschitz (A, C)-EP if (E, M) has the Lipschitz (A, C(K))-EP for every compact
metric space K. It is clear that if (E, M) has the Lipschitz (A, C(K))-EP for
some infinite compact metric space K then it has the Lipschitz (A, ¢)-EP and
hence the Lipschitz (A, C)-EP (since c¢ is isometric to a 1-complemented subspace
of C(K)). We thus use C to denote any C(K) for an infinite compact metric
space.

Let us make a few simple deductions from these results.

PRroPOSITION 4.3: Let M be a metric space and suppose E is a subset of
M. Then if (E, M) has the Lipschitz (\,C)-EP, then (E, M) has the Lipschitz
()\, Co)—EP.

Proof: This is immediate since (4.5) reduces to (4.1) if we take z = y. |
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Remark: Let us remark that (4.6) holds automatically if either:
(i) A > 1 and one of the sequences (z,)5%; or (y,)5%; is metrically un-
bounded, or
(ii) either (z,)5%; or (y,)52; has a Cauchy subsequence.
To prove the latter statement, suppose (z,)52; has a weakly Cauchy subse-
quence. Then there must exist an infinite subset M of N and e € F so that
d(zn,€) < 1€ for n € M. Now for n € M we have

d(xn,e) + d(yn,€) < d(@n,yn) + € < d(Xn,a) + d(yn,a) + €.

Thus we deduce:

PROPOSITION 4.4:
(i) If E is a compact subset of a metric space then (E, M) has the Lipschitz
C-IEP.
(ii) If E has the Heine-Borel property then (E, M) has the almost isometric
Lipschitz C-EP.

In fact, a stronger form of (i) is a consequence of a result of Espinola and Lopez
([5]), who showed that every compact subset of a C(K)-space is contained in a
compact hyperconvex subset.

PROPOSITION 4.5: Suppose (E, M) has the Lipschitz (A,C)-EP (respectively,
the Lipschitz (A, co)-EP) for every A\ > X\g. If either \g > 1 or if E is metrically
bounded, then (E, M) has the Lipschitz (Ao, C)-EP (respectively, the Lipschitz
(Ao, c0)-EP).

Proof:  Assume (E, M) fails the Lipschitz (Ao, C)-EP. Then there exists a €
M\ E, € > 0 and metrically bounded sequences (z,)5%; and (y,)5%, in E so
that (4.6) fails for A = Ao (for any subsequence). It is then trivial to see that it
fails also for some A > A\g and 0 < € < €. The cg-case is similar. |

Another deduction from these remarks is the following;:

PRrROPOSITION 4.6: Let M be a metric space and suppose E is a subset of M.
Then
(i) (E, M) has the Lipschitz co-AIEP if and only if whenever a ¢ E, € > 0

and (z,)72, is a metrically bounded sequence in E there is an infinite
subset Ml of N and e € E with

dle,x,) < d(a,xz,)+€ neM.
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(ii) (E, M) has the Lipschitz C-AIEP if and only if whenever a ¢ E, ¢ > 0
and (x,)2% 4, (yn)S2, are metrically bounded sequences in E there is an
infinite subset Ml of N and e € E with

dle,xzy) +d(e,yn) < d(a,z,) +d(a,yn) +€ ne€M.

The consequence of this remark is that we obtain almost isometric exten-
sions by checking bounded sequences and then the isometric extensions require
additionally checking of unbounded sequences.

5. Extension properties for arbitrary metric spaces

Since both ¢g and C(K) for any compact metric space K are 2-absolute Lipschitz
retracts it follows that any metric space has both the (2, ¢o)-EP and (2,C)-EP.

Let us now give criteria for the Lipschitz (A, ¢p)- and (A, C)-extension proper-
ties when 1 < A < 2. These properties can be described in terms of forbidden

sequences.

THEOREM 5.1: Let M be a metric space and suppose A > 1. The following
conditions on M are equivalent:
(i) M has the Lipschitz (A, co)-EP.
(ii) Ife > 0 and a € M, then it is impossible to find a sequence ()52, in M
such that

(5.1) M(a, k) +e < d(zj,z,) 1<j<k-—1.

If X > 1 the sequence (z1)%2, in (ii) can be assumed bounded.

Proof:  This follows from Theorem 4.1. Indeed if (ii) holds, then an easy
induction argument shows that (iii) of Theorem 4.1 holds for any E and a €
M\ E and so M has the (A, ¢)-EP. If (4.1), fails then given (x1,...,25-1) € E
(assumed to satisfy (5.1) we may find z; € E so that (5.1) continues to hold.
Conversely if (i) and there exist (e,a,x1,...) so that (5.1) holds then we may
take E = {x}7°; and now (iv) of Theorem 4.1 fails. Since E is countable this
implies that (E, M) fails the Lipschitz (), ¢)-EP contrary to assumption. ]

THEOREM 5.2: Let (M,d) be a metric space and suppose A > 1. Then the
following conditions on M are equivalent:
(i) M has the Lipschitz (A, C)-EP.
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(ii) If e > 0 and a € M then it is impossible to find sequences (z,)02, and
(yn)5o; In M such that

(52)  Ad(a,zr) +d(a,yx)) + € < d(zj,zx) +d(xj,yn) 1<j<k—1
and
(5.3)  Ad(a,zx) +d(a,yr)) + € < d(yj,zr) +d(yj,ye) 1<j<k-—1

If X > 1 the sequences (x1)32, and (yi)72, may be assumed metrically
bounded.

Proof: This follows in a similar way from Theorem 4.2. Indeed if (ii) holds
then we can verify (iv) of Theorem 4.2 for any subset FE and a € M \ E by
a simple induction argument. As before, if (4.5) does not hold then given
{x1,.. ., Zk—1,y1,...,yk—1} C E satisfying (5.2) and (5.3), we may find z, yx
so that both (5.2) and (5.3) continue to hold.

Conversely if (i) then if (5.2) and (5.3) hold, taking F = {x}32, U {yr}32,
we contradict (v) of Theorem 4.2. |

Remarks: It should be observed here that M has the Lipschitz C-IEP if and
only if we cannot find € > 0, a € M and sequences (2,)5 1, (yn)52, in M
satisfying (5.2) and (5.3) for A = 1. On the other hand M has the Lipschitz
C-AIEP if and only if we cannot find € > 0, a € M and metrically bounded
sequences ()21, (yn)22, in M satisfying (5.2) and (5.3) for A = 1. This
follows from Proposition 4.6.

We also note that (5.2) and (5.3) cannot hold if either of sequences (zp)n=1
or (y,)52; has a Cauchy subsequence. Indeed suppose we can find n > k so
that d(z,,z)) < €. Then

d(zn; l‘k) + d(yn; l‘k) < d(yn; zn) +e< d(a; zn) + d(aayn) + €.

(See the Remark after Proposition 4.3.)

It will also be useful to note the following:

THEOREM 5.3: Let (M,d) be a metric space and suppose A > 1. Then the
following conditions on M are equivalent:

(i) M has the Lipschitz (\,C)-EP and the Lipschitz (A, C)-UEP.

(ii) Every subset of M has the Lipschitz (\,C)-EP.
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(iii) Whenever M is isometrically embedded in some metric space M', ¢ > 0
and a € M’ then it is impossible to find sequences (x,)%2, and (y,)S2
in M such that

(5.4)  Ad(a,zx) +d(a,yx)) + e < d(zj,zp) +d(zj,y) 1<j<k-—1
and
(5.5)  Ald(a,zr) +d(a,yx)) + € < d(y;, zx) + d(yj,yx) 1<j<k—1

If A > 1 the sequences (x)52, and (yx)7>, may be assumed metrically
bounded.

Proof: (i)« (ii) is Proposition 2.1.
(ii)=-(iil). Again, this follows by using Theorem 4.2 for the case

E=A{an )i U{urtis-
(iii)=-(i) is similar to the previous theorem. |

As in the preceding case it is impossible to have (5.4) and (5.5) when either
sequence (2,)22; or (y,)>2; has a Cauchy subsequence.
COROLLARY 5.4: (i) If M has the Lipschitz (\,C)-EP then M has the Lipschitz
(A, co)-EP.
(ii) If M has the Lipschitz (X, co)-EP then M has the Lipschitz (1+ £ )),C)-EP.
In particular M fails the Lipschitz (A, C)-EP for every A < 2 if and only if M
fails the Lipschitz (A, co)-EP for every A < 2.

Proof: (i) follows from Proposition 4.3. For (ii) we suppose p = 1+ 1\ and
that a € M, € > 0 and (zx)32, (yr)72, are bounded sequences chosen so that

(5.6) pld(a, zk) + dla,yk)) + € < d(zj, zx) +d(zj,y) 1<j<k-1
and
(5.7) pld(a, zx) + d(a,yx)) + € < d(y;, vx) + d(yj,yr) 1<j<k—1

We may assume without loss of generality, by passing to a subsequence, that
the limits lim, o d(a,2,) = & and lim,_,o d(a,y,) = 1 exist and that £ < 7.
Now by Theorem 5.1 (iv) given any my there exists m > mg and an infinite
subset M of N such that

1
d(xTTL) l‘n) < )\d(l'n, a) + 56 n € M.
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and
d(l‘m, yn) < d(l‘m, a) + d(yn7 a)-

Hence for n € M with n > m,

1
w(d(a, zy,) + d(a,yn)) + 56 < Md(a,zp) + d(zm, a) + d(Yn, a).

Letting n — oo we have

1 1
(L4 5N(E+n) + 5€ S A+ + d(@m, a).
Now we can let m — oo and obtain
1 1
(L4 50E+m) +5e <A +n+¢

i.e. 1

contrary to assumption. |

THEOREM 5.5: Suppose X is a finite-dimensional normed space. Then every
subset of X has the Lipschitz co-UIEP property; in particular, X has the Lips-
chitz co-1EP.

Proof: Suppose E C X is embedded in a metric space M and a € M \ E. We

use (iv) of Theorem 4.1. Fix ¢ > 0. We consider a sequence in E, (z,)52

n=1-
If ()22, has a bounded subsequence then it follows from the Heine-Borel
property of X that (4.2) is satisfied for some M. We therefore may assume
passing to a subsequence ||z1|| > 0 and that ||z,| > n|zp—1] for n > 2 and
that y, = ©,,/||zn| is convergent to some y € Y. Assume that for every k the
set of n such that

len — 2| < d(a,z,) + €

is finite. Then by passing to a subsequence we can suppose that
lxn — zk|| > d(a,z,) +€ n> k.

Let x}, ; be a norming functional for x, —zy i.e., ||z}, .|| = 1 and 27, ; (vn, —x1) =
|z — zx||. Then

Ty (@0 — k) 2 [lza] = d(a,0) + € > @7, . (24) — d(a,0) + €.

Hence,
zy, p(zr) < d(a,0) —e n >k
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Let yj be a cluster point of (z;, ;)7%;. Then y;(y) =1 but
Yk(yr) < llzw] =" (d(a,0) =€) keN.

If y* is a cluster point of ()2, then it follows that y*(y) = 0 which gives a
contradiction. |

THEOREM 5.6: Let M be a metric space. The following conditions on M are
equivalent:
(i) M has the Heine—Borel property.
(ii) Every subset of M has the Lipschitz C-UAIEP.
(iil) Every subset of M has the Lipschitz (\,C)-UEP for some X\ < 2.
(v) Every subset of M has the Lipschitz (), c¢y)-UEP for some A < 2.

Proof: (i) = (ii) follows from Proposition 4.5.

(ii) = (iii) is trivial.

(iii) = (iv) follows from Proposition 4.3.

(iv) = (i) If M fails the Heine-Borel property for any p > 1 we can find an
infinite sequence (x,,)52; such that for some 6 > 0 we have

§ <d(zj,zx) <pd j kel

Let E = {x;}32, and adjoin a point a to M such that d(a,z;) = $ué for all
j € N. Let e = v6 where v > 0. We see that the hypotheses of Theorem 4.1 (v)
can only hold if

1
1§§)\u+u.

Since > 1 and v > 0 are arbitrary this reaches a contradiction if A < 2. |

Example: The following example shows that we cannot prove a similar result
to Theorem 5.6 for the isometric case. Consider the metric on N defined by
d(m,n) = max(m,n) for m # n. It is easy to see that the space (N, d) has the
Heine-Borel property and the Lipschitz C-IEP. However if one adjoins 0 and
defines d(0,n) = n—1/2 then it is clear in Theorem 4.1 that (iv) fails for a = 0,
zn, = n and € < 1/2. Thus this space fails to have the Lipschitz C-UIEP or
Lipschitz co-UIEP.

Let us note at this point that it is easy to give examples of metric spaces
which fail the Heine-Borel property but nevertheless have the C-IEP. This is a
consequence of the following
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PROPOSITION 5.7: Let (M, d) be an ultrametric space; then M has the Lipschitz
C-IEP.

Proof: Suppose we can find a € M € > 0 and two sequences (2, )n=1, (Yn)o,
such that (5.2) and (5.3) both hold. Let

or = min(d(zk,a),d(yx,a)) k=1,2,...
Fix k and suppose for example that d(xy,a) = ox. Then
d(xry1, 21) < max(og, d(Try1,0)), d(Yry1, r) < max(ox, d(Yrs1,a)).

Hence either
d(zky1,0) < o — 1/2¢

or
d(ykt1,a) < o — 1/2e.
This implies
Opt1 <o —1/2¢ k=1,2,...

which gives a contradiction. |

If X is an infinite-dimensional Banach space then the Kottman constant
[7] of X is defined by:

R(X) = sup sep(an)
T, EBx

where for any sequence (x,)%2 ; we define
sep(zy) = inf ||zm — 24|
m#n

A result of Elton and Odell [4] asserts that x(X) > 1 for every infinite-dimen-
sional Banach space. See also [8] for a recent lower estimate for x(X) for X
non-reflexive.

It is an immediate consequence of Theorem 5.1 that:

ProrosITION 5.8: If X is an infinite-dimensional Banach space, then X has
the Lipschitz (X, co)-IEP if and only if A > k(X).

In particular, X fails the Lipschitz co-AIEP: this result is due to Lancien and
Randrianantoanina [9].

We remark that if 1 < p < oo then x(£,) = 2'/P while k(co) = 2 ([7] and [3]).
We next show that for these spaces if 1 < p < 2, the Lipschitz (), ¢)-EP and
the Lipschitz (A,C)-EP are equivalent:
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PROPOSITION 5.9: For 1 < p <2, {, has the Lipschitz (\,C)-EP if and only if
A > k(€,) = 2Y/P. Similarly co has the Lipschitz (\,C)-EP if and only if A\ = 2.

Proof: For the case of £1 and ¢y this is immediate from Corollary 5.4. We
consider the case 1 < p < 2. We will need the following inequality:

(5.8) 2MPs 4 (sP 4+ 1P + (u+ v)P)Y/P < 2V/P((sP 4 uP)V/P 4 (1P + vP)1/P)
0<s<t, u,v>0.

We first note that to establish (5.8) we need only consider the case s = t.
This follows since

21/p(tp + vp)l/p —(sP + 1P + (u+ U)p)l/p
is increasing as a function of ¢ if s, u, v are fixed. Thus we need to prove:
(5.9) s+ (P +1/2(u+v)P)YP < (P +uP)/P 4 (sP + PP 0 < s u, 0.

In fact, using the concavity of ¢ — ¢1/7, the fact that p < 2 and the triangle

law in ¢, we have

s+ (s +1/2(u+ U)P)l/p < 2(sP + 1/4(u+ ,U)p)l/p
< 2(sP + (1/2(u + v))P)V/P
< (Sp + up)l/p + (Sp + ,Up)l/p

and this proves (5.9) and hence (5.8).

Now suppose a € £, and (2,)52 1, (yn )52 ; are two bounded sequences. We will
verify (ii) of Theorem 5.2 with A = 21/7. Assume that ()5, (yn)32,, a, € sat-
isfy (5.2) and (5.3) and that both (z,,)52; and (y,)22; are bounded sequences.
We may assume that lim,, .o ||z, —a|| and lim,, . ||y» — a|| both exist and that
lim, .o , = x weakly and lim, .., y, = y weakly. Further we can suppose
that lim, o ||un|] = € and lim,— ||v,|| = n exist where u,, = x,, — 2 and
U = Yn — Y. Let us suppose & < 1.

Then if m > n,

2P (|2 — all + llym — all) + € < [&m =zl + lym — za -
We shall show, however, that

(5.10) 27 tim (|t — all + |y —all) > Tin Tim (i~ 2all + g — 2a])

i im
— 00 M— 00

(and all limits exist) and this gives us a contradiction.
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Now,
im (|2, — ol = Hm[Jum — un | = ([Jus|” + gp)l/p-
m—00 m—00

Thus

lim lm |2, — 2| = 2/P€.

n—oo m—oo
Similarly

B [y — znll = (ly — zal” +n?)'/7
m— 00

so that

lim Hm ||ym — 20|? = (|ly — 2||P +7° + gp)l/p_

Now, using (5.8)
2176 + (|ly — w|]” + 17 + €)"/7
<217+ ((la =yl + la = )P + 17 + )7
<217 ((la = al” + )7 + (la - ylI” +n*)"/7)

- 21/1)(”11_,120 l#n —all + lim [y, — al]).

This proves (5.10) and hence the Proposition. |

Note the argument of Proposition 5.9 fails for 2 < p < co. We are very
grateful to Yves Dutrieux for pointing out an error in an earlier version of this
Proposition.

PROPOSITION 5.10: ¢o 4 has the Lipschitz co-IEP.
Proof:  Suppose a, (z,)22, € > 0 satisfy (4.2) for A = 1. Let Py: co+ — co +
be the map Py(§) = (&1,..-,&,0,...) and let Qp = I — P,. Fix n so that

IQnall < €/2. We now argue by Ramsey’s theorem that there is an infinite
subset A of N so that either

ek — x| = [[Pu(ze — )| 4,k € A
or
ok — a5l = 1Qn(en — )l 5,k € A

Let us consider the first case. Then the sequence (P,zk)kea and P,a satisfy
(5.1) and thus contradict Theorem 5.5 for £ . Hence the second case must hold.

Now it easy to see that

[@n(zr — )| < max{||Quak |, [|@na;l}-
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On the other hand
1
lzr = all 2 |Qnzkll — e
Hence if k,j € A with k > j we have

1
1Qnzjll > llaw —af| + > [|Qnzxl + Se.

This is clearly impossible since A is infinite. ]

Remark: Note that c¢o 4 cannot have the Lipschitz co-UAIEP because it fails
the Heine—Borel property. See Theorem 5.6 above.

PROPOSITION 5.11: ¢ 4+ has the Lipschitz (A, C)-EP if and only if A > 3/2.

Proof: By Corollary 5.4 it is clear that co 4 has the (A\,C)-EP if A > 3/2.
For the other direction define a = e; and two sequences x,, = 2e; + e,4+1 and
Yn = €n+1. LThen

d(xpn,a) +d(yn,a) =2 n=1,2,...
and
d(l'n,l'k) + d(yn; l‘k) = d(l‘na yk) + d(yna yk) =3 k<n.
Applying Theorem 5.2 gives the result. |

6. Collinearity properties

Suppose (M, d) is a metric space. We will say that the ordered triple of points
{21, 22, x5} is metrically collinear if

d(l‘l,l'g) = d(l‘l, ZL‘Q) + d(l‘Q, ZL‘3).
We say that {1, 22,23} are e-collinear where ¢ > 0 if
(61) d(l‘l, ZL‘3) > d(l‘l,xg) + d(l‘Q, ZL‘3) — €.

Note that if {21, z2, 23} is e-collinear then so is {z3,x2,z1} but it may or may
not be the case that {x1,z3, 22} is e-collinear.

Let us say that a metric space (M, d) has the collinearity property, if, for
every infinite subset A C M and every € > 0, there are three distinct points
Z1,%9,x3 € A such that {z1,z9, x5} are e-collinear.

This concept appears to be new, but arose independently at the same time
in the work of Melleray [12]. Melleray characterizes metric spaces M with the
collinearity property as those for which the space E(X) of Katetov maps is
separable; we refer to his work for further information.
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PROPOSITION 6.1: Let (M,d) be a metric space. In order that M has the
collinearity property it is necessary and sufficient that:
(a) M has the Heine—Borel property, and
(b) Whenever (x,,)22, is an unbounded sequence in M and € > 0 there is a
subsequence (Tnep) so that for every j, k,n € A with j < k < n the triple
{z;,zk,2n} is e-collinear.

Proof: Suppose first that M has the collinearity property.

Suppose (z,)52, is a bounded sequence in M such that inf,, 4, d(zp,, ) > 0.
By standard Ramsey theory we can find an infinite subset A of N such that for
some constant ¢ we have ¢ < d(xp,, z,) < 3¢/2 for m # n and m,n € A. But
then (zn)nea violates (6.1) for e = ¢. This proves (a).

For (b) we observe that we may pass to a subsequence J so that d(z;, ) > 3¢
if 5,k € J and

d(znazj)>2d(xkazj) j,k’<77,, j7k7n€e]I1-

Now by Ramsey’s theorem there is a further infinite subset J; so that if j < k <
n with j, k,n € J;1 then either {z;, zx, z,, } or {zk, xj,z,} is e-collinear. Here we
use the fact that (x;, ;) must be the shortest side in the triangle.

Finally applying Ramsey’s theorem once more, we find an infinite subset A
of J; so that either we have:

d(zp,xj) > d(xn, zx) +d(zg,z;) —€ j<k<n, jk,ne€A
or we have
(@, zr) > d(Tn, ) + d(z),25) —€ j<k<n, jkneA.
Let us prove that the second alternative is impossible. Indeed this implies that
d(zp,xj) < d(xn,z8) —2¢ j<k<n, jknéeA.
Now suppose j < k <l < n with j,k,I,n € A. Then
d(zy,x1) < d(Tn, z;) + d(zj, ) < d(Tn, 28) + d(zE, 1) — 2€.

This is a contradiction and establishes (b).
Conversely if (a) and (b) hold, suppose (x,)%2 is a sequence in M. Then if
(25,)22; is unbounded we may use (b) to find j < k < n so that

n=1

d(zn, ;) > d(@n, zK) + d(2R, ) — €.
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If (2,)22, is bounded it has an accumulation point z in the completion of M.
Pick xj, g, so that d(z;, z), d(xg, x),d(z;, z) < %e, and it is clear that (6.1)
is satisfied. ]

PROPOSITION 6.2: Suppose (M;)?, are metric spaces with the collinearity
property. Then both (3 M;)e, and (3", M;)e. have the collinearity prop-
erty.

Proof: 1In both spaces it is clear that we have the Heine—Borel property.

Now suppose (z);2; is an unbounded sequence in (3-7_; Mj)e,. Letting
g = (k1,---»&kn) by repeated use of Proposition 6.1 given € > 0 there is an
infinite subset A of N so that for each 1 < ¢ < n we have either

di(&is Eri) + di(Eiy &) < di(&is&jo) +€/n I>k> 34, Lk jeA

or

di(&i, ki) <€/2n 1>k, I,k € A.
It then follows that

d(zy, xr) + d(zk, z;) < d(z,zj)+e I>k>j, Lk jeA

and hence (Z?Zl M;)¢, has the collinearity property.

Next suppose (zx)52; is an unbounded sequence in (Z?Zl M;)s... Then by
Ramsey’s theorem there is an infinite subset A of N and a fixed 1 < 7 < n so
that

d(ry, ;) = di(§in§ji) k>4, k,j € A

The conclusion follows using the collinearity property in M;. |

LEMMA 6.3: Let E be a subset of a metric space M and a € M. Suppose E has
the collinearity property. Then, for any sequence (x,)52 , in E and any ¢ > 0
there is an infinite subset (x,)nea such that {a,xy,x,} is e-collinear whenever
k < n with k,n € A.

Proof: 1If (x,)$2 4 is bounded then since E has the collinearity property we can
pass to a subsequence (&, )nea such that d(zg,z,) < %e for k,n € A and it is
then trivial that {a,zy,z,} is e-collinear.

If (2,)%2, we can pass by Proposition 6.1 to a subsequence (zp,)nea so that
{z;,zk,xn} is %e—collinear when j,k,n € A and j < k < n and also such that
the limit

lim d(xn,a) — d(xn, 1) =&

n—oo
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exists. We can further require that
1
|d(zp,a) — d(z,,x1) — €] < G l1<neA.
Then if 1 < k < n with k,n € A we have
1
d(xn,a) — d(zg,a) > d(zn,, 1) — d(zg, ©1) — € > d(zy, k) — €
and we are done. |

We recall that a finite-dimensional normed space X is polyhedral if the unit
ball Bx is a polyhedron, or, equivalently X isometrically embeds into 7} for
some m. The next theorem is a close relative of Theorem 7.7 in [11].

THEOREM 6.4: A finite-dimensional normed space X is polyhedral if and only
if X has the collinearity property.

Proof:  First note that ¢ has the collinearity property by Proposition 6.2.
Thus any polyhedral space has the collinearity property.

For converse assume X is finite-dimensional but not polyhedral. Then X
contains a two dimensional subspace X which is also not polyhedral [6]. Thus
there is a point u € Xy with |Jul]| = 1 so that u is an accumulation point of
extreme points in Bx,. It is clear that we can choose v € X so that if F(¢) =
|lu+ tv|| — 1 then F has a minimum at ¢ = 0, the right-hand derivative satisfies
F' (t) = 0 and also F(t) > 0 whenever ¢ > 0. Observe that lim; oy F’ (t) =
F' (0) =0.

We will now select a sequence x, = s,(u + t,v) with s,,t, > 0 so that
|Zm — Znll < |Zm|| = |2n]] — 1 if m > n. This will complete the proof by taking
a = 0 in the preceding Lemma.

We will select (sp,t,)52 inductively so that ||zm, — n|| < ||Zm|| — [zl — 1
if m > n and additionally ||z,| — s, = s, F(t,) > 1 for all n. Pick s1,¢; > 0
arbitrarily so that s1F(t1) > 1. Now suppose (zx)r<n have been selected. To
pick (sn,tn) we observe that

lim lim sF(t) = oo
t—04 s—oo
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and for each fixed k < n,

lim lim [[s(u+tv)|| — ||s(u + tv) — sg(u + txv)||

t—04 s—oo

= lim lim s(1+ F(t)) — (S*Sk)(HF(m))

t—0+ s—o0 S — Sk

. . Sk
— lim 1 Ft) — (s — F(t— ¢ —t)
i, i sk + sF(1) = (s — s F(t = o=t — 1)

= Jim T s+ B (1) + (s s0) (F() - F(t— =1, - 1))

t—0+ s—o0o Sk

= t11131+ sk + skF(t) + skt — t)F'(t)

A

k]l = 1.

Hence it is possible to choose s,,t, so that z, = s,(u + t,v) verifies the
inductive hypothesis and the proof is complete. |

THEOREM 6.5: Let M be a metric space with the collinearity property. Then
M has the Lipschitz C-UIEP and the Lipschitz C-IEP.

Proof:  Suppose M is embedded in a metric space (M’ ,d). Suppose
a € M'\ M. We verify (v) of Theorem 4.2 (i.e. condition (4.6)). Suppose
e >0 and (z,)32, (yn)S2; are two sequences in M. We can select an infinite
subset M of N so that if k,n € M and k < n then {a,xy,x,} are e-collinear.
Now for fixed k € M and n € M with n € M,

d(zg, xn) + d(xg, yn) < d(a, ) — d(a, zg) + € + d(xk, yn)
<d(a,rn) +d(a,yn) + €.

This implies the fact that M has the Lipschitz C-UIEP.
Now any subset of M also has the collinearity property and so also has the
Lipschitz C-UIEP. Hence M has the Lipschitz C-IEP. |

The following Theorem extends the result of Lancien and Randrianantoanina
[9] who proved that every finite-dimensional polyhedral space has the Lipschitz
C-TEP. Let us remark that the linear version of this result is due to Lindenstrauss
[11]: a finite-dimensional normed space X has the Lipschitz C-UILEP if and only
if X is polyhedral.

THEOREM 6.6: Let X be a finite-dimensional normed space. Then X has the
Lipschitz C-UIEP if and only if X is polyhedral.
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In particular, if X is polyhedral then every subset of X has the Lipschitz
C-UIEP and X has the Lipschitz C-IEP.

Proof: 1If X is polyhedral then Theorem 6.5 and Theorem 6.4 give the conclu-
sion. Conversely if X has the Lipschitz C-UIEP, then (X,Y’) has the C-ILEP for
every normed space Y O X with dimY/X = 1 by Lemma 2.2. By the Corollary
to Theorem 7.5 of [11] we obtain that X is polyhedral. [ |

The collinearity property is not necessary for a metric space M to have the
Lipschitz C-UIEP (since ¢, has the Lipschitz C-UIEP). It is also not necessary
even if we require that every subset of M has the Lipschitz C-UIEP. This follows
from the following theorem.

THEOREM 6.7: Let X be a strictly convex finite-dimensional normed space. Let
K be a closed subset of X such that A\K C K for every A > 0 but KN(—K) =10
(e.g. K is a proper closed cone). Then every subset of K has the Lipschitz
C-UIEP.

Proof: 'We use Theorem 5.3. Suppose K is embedded in a metric space M and
a € M\ K. Assume that we have a pair of sequences ()5, (yn)52; in K
such that

d(a,zn) +d(a,yn) + € < llon — @k| + [lyn — x| 1<k <n-1
and
d(aamn) + d(aayn) +e< Hxn - yk” + Hyn - ka 1<k<n-1

Since K has the Heine-Borel property the sequences (z,)5%; and (yn)52,
cannot have bounded subsequences. Therefore we have lim, ., ||z.| =
lim,, 0 ||yn|| = 00. By passing to a subsequence we can suppose that both
(xn/l|znll) and (yn/llynl|) are convergent to wu,v respectively. We have ||ul| =
v =1 and u,v € K. Now for 1 <k <n—1, let 2}, , € X* be chosen so that
[y, xll = 1 and @}, ; (xn —2x) = ||[2n — 24|. Similarly chose y; , with [ly; || =1
and y;,k(yn - l‘k) = Hyn - .Z'k” Thus

d(a, 2n) +d(a, yn) + € < a7 1 (0 = k) + Yp k(Yo —2p) 1<k <n—1L

Hence

xfz,k(xn) + y;,k(yn) <[zl + llynll < d(a,2,) + d(a, yn) + 2d(a,0)
< @y, k(Tn — Tk) + Yp x (Yn — Tx) + 2d(a, 0),
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so that
z;,k(zk) + y;‘hk(zk) < 2d(a,0) k<n.

Now for fixed k let uf,v; be accumulation points of the sequences (l',’:hk)n>k-
and (y;, . )n>k- Then uj(u) =1 and vj(v) =1 and

(up +vi)(zg) < 2d(a,0) k=1,2,....

Now let u* be an accumulation point of (u})?2; and v* an accumulation point
of (v})72 ;. As before u*(u) =1 and v*(v) = 1. We also have, since

(up, + vip) @/ |zx]) < 2d(a, 0)]|axl| ™,

that

(u* +v")u <0.
This implies that v*(u) = —1 and hence v*(v — u) = 2 < ||Jv — u||. By strict
convexity v = —u which is impossible since K N (—K) = . |

Now consider the cone K C ¢35 of all £ = (&,...,&,) where & > 0 for
1 <j < n. All subsets of K have the Lipschitz C-UIEP by Theorem 6.7. But ¢§
fails to have the collinearity property by Theorem 6.4 so that there is a sequence
(2r,)22; and € > 0 so that no three points are e-collinear. Infinitely many of the
()52, must belong to one of the cones Kg,, g9, ={£:60;§ >0, 1 <j<n}
for some choice of §; = £1 whence it follows that K also fails the collinearity
property.

THEOREM 6.8: M @1 M has the Lipschitz C-IEP if and only if M has the
collinearity property.

Proof: If M has the collinearity property then M @, M also has the collinearity
property (Proposition 6.2) and hence the Lipschitz C-IEP (Theorem 6.5).

Now suppose M @1 M has the Lipschitz C-IEP. Suppose ¢ > 0. Suppose
(25,)22, is any sequence in M. We consider the sequences in M &1 M defined
by un = (zn,21) and v, = (x1,2y). Let b = (z1,21). By Theorem 5.2 (ii) we
can find a fixed element e = u; or e = v; and an infinite subset A of N so that

d(tn, e) + d(vp,e) < d(un,b) +d(v,,b) +€ ne€A.

Hence
d(zn, zj) + d(n, 1) + d(xj,21) < 2d(zpn,21) +€ neN.
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This implies that
d(zy,x;) +d(zj,z1) < d(xn,z1) +€ n>j, n,jeA

so that M has the collinearity property. |

Example: It follows that if X is a finite-dimensional space which is not poly-
hedral then X ¢ X fails to have the Lipschitz C-IEP. Thus the 4-dimensional
space (3 @1 /3 fails to have the C-IEP; this example was given by Lancien and
Randrianantoanina.

It is however possible to give a 3-dimensional counter-example. Take a 2-
dimensional space E which is not polyhedral, and use the Corollary to Theorem
7.7 of [11] to create a 3-dimensional space X D E so that (X, E) fails the linear
C-IEP and hence also the Lipschitz C-IEP by Lemma 2.2.

7. Finite-dimensional normed spaces with the Lipschitz C-IEP

Although we have characterized finite-dimensional normed spaces with the Lip-
schitz C-UIEP, the case of the Lipschitz C-IEP is rather more subtle. We show
here that in addition to polyhedral spaces (as proved by Lancien and Randri-
anantoanina [9]) this property is enjoyed by spaces with a Gateaux smooth norm
and 2-dimensional spaces.

Suppose X is a finite-dimensional normed space, let Dx be the set of all
x € 0Bx so that the norm is Gateaux differentiable at x. The set Dx is dense
in OBx. Let D% be the set of * € X* with ||z*|| = 1 and such that z*(z) =1
for some x € Dx. Let OsBx~« be the closure of D%. Then d,Bx- is the minimal
closed boundary for X, i.e. the smallest closed subset G of Bx+ so that

lz]| = max{z*(z) : z € G}.

We shall say that X is quasi-smooth if
(QS1) If 0 # z € X the set {z* € 0sBx- : *(x) = ||z||} is finite.
(QS2) For every zf, 2% € O;Bx~ with z} # af there is a neighborhood V' of
so that if * € V and « is such that «*(z) = ||z| then af(x) > a7 (x).
Let us explain condition (QS2). For z € X define

Pa(y) = max{z™(y) : «*(2) = ||z[|, =" € 9;Bx-}.

LEMMA 7.1: Let X be a finite-dimensional normed space with property (QS1).
Then X satisfies (QS2) if and only if whenever (u,)>2, Is a sequence in X
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oo

converging to some u # 0 and (uf)S, is a sequence in J;Bx+ converging to

some u* and such that u (u,) = ||uy|| for all n, then there exists N so that

pu(un) = U*(un) n > N.

Proof:  First assume the condition of the lemma holds. If (QS2) fails for
some pair (z(,z}) we can find a sequence (u

*
n

) in JsBx~ converging to
and a sequence (up) in 0Bx such that u)(u,) = 1 and zj(u,) < z7(up).
By passing to a subsequence we can suppose (uy)22; converges to some u and
then zf(u) = 1 = x7(u). Hence py(un) = x{(u,) for n large enough, but
pulun) = 27 (up).

For the converse direction suppose instead that we have (u,)52; and (u})>2

n=1
as specified but u*(u,) < py(uy,) for all n. Then by passing to a subsequence
and using (QS1) we can assume there exists v* # u* so that v* € 9;Bx~,
v*(u) = ||u| and py(un) = v*(un) for all n. Then the pair (u*,v*) violates

(QS2). u

PROPOSITION 7.2: Suppose X is a finite-dimensional normed space. Then X
is quasi-smooth if one of the following conditions holds:

(i) X is polyhedral;

(ii) X is Gateaux smooth;

(iii) dim X = 2.

Proof: 1If X is polyhedral then 0;Bx~ is a finite set and the proof is trivial.

In case (ii), (QS1) is immediate. For (QS2) we argue that if (u,)52, is a
convergent sequence in dBx, with limit u, and (u} )22 is a convergent sequence
in 9;Bx+ with limit u* and if u} (u,) = 1 then u* norms u and p,(z) = u*(z)
so that Lemma 7.1 applies.

If dimX = 2 we must first show that (QS1) holds. Suppose u € 9Bx
and u* € 0sBx» norms u. Pick any v linearly independent of u. There is a
sequence u), € D% and a sequence u, = spu + t,v in Dx with v} (u,) =1
and lim,,, u), = u*. We can suppose u, converges to some w = su + tv
where s > 0. The function f(t) = |Ju + tv|| is convex. If ¢ # 0 then u # w
then |[tw 4+ (1 — ¢)u| = 1 for 0 < ¢ < 1 and hence u*(v) is either the left or
right-derivative of f at 0. If ¢ = 0 then s = 1 and the properties of convex
functions again show that u*(v) is either the left- or right- derivative of f at 0.
This implies there are only two points in {u* € sBx~ : u*(u) = 1}.

We must also check (QS2); we again use Lemma 7.1. Again suppose (uy) in
0Bx and (u}) in s Bx~ satisfy v (u,) = 1 and converge to u, u* respectively. If
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u admits only one norming functional in Js Bx« then there is nothing to prove.
Suppose it admits two, i.e. v* and w* # u*. Defining v as before we see that

pu(su + tv) = max(s + tu*(v), s + tw* (v)).

For convenience we assume u*(v) > w*(v) so that u*(v) = f/(0) and
w*(v) = f.(0) where f| and f’ denote the right- and left-derivatives. If
Un = Spu + tpv by the above reasoning uf(v) = s, f%(tns,!) Since s, — 1
and t,, — 0 from properties of convex functions we must have t,, > 0 eventually
and then py, (u,) = u*(up). |

THEOREM 7.3: If X is quasi-smooth then X has the Lipschitz C-1IEP.

Notice this gives a further proof of the Lancien-Randrianantoanina result
when X is polyhedral but also establishes the result for the case when dim X = 2
or X is Gateaux smooth. One can also easily visualize other examples.

Proof:  We will verify Theorem 5.2; we note that we can assume a = 0 in (ii).
Suppose for some € > 0 we can find two sequences ()22, (yn)22; so that

(7.1) [zl + lynll < llzn — 2kl + lyn — 24l ¢ T<k<n-—1
(7.2) [zl + lynll < llzn = yull + llyn —yrll —e 1<k <n-—1.

Our proof will in fact only use (7.1). We must have

lim {|lzn[| = lim [yn[l = oo
n—0o0 n—0o0

(see the Remarks following Theorem 5.2).
By passing to subsequences we may suppose that ||z, ||, ||yn| > 0 and

l‘TL . yn

= u, =
=00 ||z | =20 ||yn||

where ||u|| = ||v]| = 1.
Let F be the (finite) set of u* € 9sBx~ so that u*(u) = 1. Let Fy be the
subset of F' of all u* which are extreme in the convex hull of F. Define

pu(z) = max{u*(x) : v* € F} = max{u”(x) : u* € Fy}.

We note that by passing to a further subsequence we can suppose that for
some fixed u(; € F we have

ug(zk) = pulzr) k=1,2,....
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Let Fy = F\{u$}. Then it is clear that u{ is not in the convex hull of F; U{0}.
Hence we can find a vector z € X so that

ug(z) = 1+ max{u*(z) : u* € F; U{0}}.

Let « . be a norming functional in d;Bx~ for x, — x, i.e. ||z} .|| =1 and
x4 (wn — ax) = |lzn — xkll. Let y;; , be a norming functional in d;Bx- for
Yn — Tk

By passing to an appropriate subsequence we can suppose that

. * * . * *
lim Ty, ) = T, lim Ynke = Yk

n—oo n—oo

It is clear that each z} norms u and each yj norms v and each belongs to
OsBx~.
Now since X is quasi-smooth the sets

{z7k=1,2,...} and {y;:k=1,2,...}

are finite and by passing to a further subsequence we can assume that they are
constant. Let us put x}, = uj for all k¥ and y;, = v* for all k.
We further have (from Lemma 7.1) that for each k there exists No(k) so that

Ui (zn — o) = pulan — k) 1> No(k).
We now may pass to a subsequence and further assume that
ul(zn — ) = pulTn —x1) 1>k
We also have
Ty 6 (Tn) + Yn i (Un) < 2 (X0 — k) + Yp (Y — k) — €

which simplifies to
(Th g+ Unp)(Tr) < —e

Letting n — oo we obtain
(ui +v")(ag) < —e k=1,2,....

Thus
(u;+v*)( Tk )so

[zl
so that
(ul +v*)(u) <0.
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Hence v*(u) = —1 and so —v* also norms u. It is clear that u} +v* # 0 (so that
if X is Gateaux smooth we have a contradiction and the proof is complete).

In the general case we also have —v*(xy) < ug(xy) so that
(ul —ud)(zk) < —¢, k=1,2,....
We also have
ui(@n — x) = pu(®n — 2k) > uf(zn —2K) kK <n.

Hence
(uf —ud)(zp —xn_1) >0 n=23....
Thus the sequence (u} — ug)(zx) is monotone increasing and bounded above.

We conclude that limy_ o (u] — ug)(zx) exists. Let

Ok =sup(uy —ud)(zn — ) k=1,2,...
n>k

so that limy_.o dx = 0.
For any n > k let us consider

Wn ok = Tn, — T + (0] —ug)(Tn — k)2 + 27" 2.

Then
Wn, k

=00 [Jwn il

Recall that if u* # uj; and u* € F then

u(z) <wuj(z) — 1.
Hence

u(Wnok) < (Tn — Tp, u" — ul +ug) + (Tn — Tk, ul — ug)ug(2) + 27 "ug(2)

< “8(wn,k)-

Thus if w} , € 0sBx~ norms w,, ; we have (using quasi-smoothness, in par-
ticular Lemma 7.1)

: ko k
lim Wy, J; = Ug-
n—oo

Now appealing to (7.1)

[zl + lynll < llwnpll + lwne = (@n = zp)ll + lyn — zill — €
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and hence
Wik (Tn = Wi k) + Y g (2k) < fwn g — (20 — k)| — €
which reduces to
Wy k(@) + gk (en) <2277 + i) 2] — e

Taking limits as n — oo we have

(ug +v%) () < 20k 2] — e
However u(xr) > —v*(z) for all k so that

0<e<20lz| E=1,2....

This contradiction proves the Theorem. |

8. Holder extensions

We will now consider a problem raised by Naor [14]. Suppose for a given Banach
space Y, M is a metric space with the Y-IEP. Naor asks if for 0 < a < 1 it
is always true that for any subset F¥ of M and any a-Hélder continuous map
Fy: E — Y satisfying

[Fo(z) — Fo(y)|| < d(z,9)* zy€eE
one has an extension F: M — Y with
[F(z) — F(y)l| <d(x,y)* z,y€ M.

Naor conjectures that is false for arbitrary Y but true for Y a Hilbert space. We
shall resolve this question for ¢y and C(K)-spaces where K is compact metric
and, in particular, show that it is false in the latter case.

If M is a metric space and 0 < a < 1 we denote by M the metric space
(M,d™). Naor’s question is then whether M has Lipschitz Y-IEP whenever M
has the Lipschitz Y-IEP and 0 < o < 1.

PROPOSITION 8.1: Suppose M has the Lipschitz co-AIEP. Then for every 0 <
a < 1, M® has the Lipschitz cy-IEP.

Proof: If not there exists 0 < o < 1, € > 0, a € M and a sequence (x,)5%
such that
d(zyn,a)® + e <d(zn,z;)* j<n.
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Note this implies that (x,)%2 ; is metrically bounded. Indeed, if not, by passing
to a subsequence we can assume that d(z,,a) — oo. But then for every j we
have

lim (d(zp,z;)* — d(zn,a)®) =0

n—oo
which is impossible. However if (z,,)52; is metrically bounded then we deduce
the existence of > 0 so that

d(zp,a) +n < d(zn,z;) j<n

which contradicts the fact that M has Lipschitz ¢o-AIEP (Theorem 5.1). |

PROPOSITION 8.2: Suppose M is a metric space and 0 < o« < 1. Then M has
the Lipschitz C-IEP (respectively, co-IEP) if and only if M® has the Lipschitz
C-AIEP (respectively, co-AIEP).

Proof: Suppose M has Lipschitz C-AIEP but not Lipschitz C-IEP. Then, by
Theorem 5.2 we can find a € M, € > 0 and two sequences (2,)%2 ; and (y,)22
such that

(8.1) d(Tn,a)® + d(yn,a)® +€ < d(xnaxj)a + d(ymxj)a j<n

and

(82) d(@n,a)® + d(yn, a)* + € < d(zn, y;)* + dyn,y;)*  J <n.

Let us suppose one of (2,,)22 1, (yn)22 1, say (2,)22 1, is not metrically bounded;
by passing to a subsequence we can suppose d(x,,a) — oo and, as in the
preceding Proposition,

lim (d(zn,y;)* —d(zn,a)*) =0 j<n.
n—oo
It is thus possible to pass to a further subsequence such that
1 .
d(yn,a)* + € <d(Yn,y;)* J<n.

If (yn)52; is metrically bounded this contradicts the fact that M* has the C-
ATEP (and hence the ¢o-AIEP). If it is not metrically bounded then we can
apply a similar argument to the above to deduce that
lim inf(d(yn, y;)® — d(yn,a)*) =0
and hence get a contradiction.
If both (z,)52; and (y,)S2; are metrically bounded then we have a contra-
diction to the fact that M has Lipschitz C-AIEP. |
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PROPOSITION 8.3: Suppose M has the Heine-Borel property. Then for every
0 <a <1, M* has Lipschitz C-IEP.

Proof: This follows from Propositions 8.2 and Proposition 4.5. |

Note that this Proposition implies that for any finite-dimensional normed
space X we have isometric Holder continuous extensions into C(K)-spaces; this
result is due to Lancien and Randrianantoanina [9].

We recall (see [1]) that a metric space M is stable if for any pair of metrically
bounded sequences ()52 and (y,)22; we have

lim lim d(zm,y,) = lim lim d(@m,,yn)

m—0o0 N—00 n—oo m—0o0

whenever all the limits exist. Any subset of an L,-space when 1 < p < oo is
stable.

THEOREM 8.4: Let M be a stable metric space with the Lipschitz C-AIEP;
then for every 0 < a < 1, M“ has the Lipschitz C-IEP.

Proof: Suppose M fails the Lipschitz C-IEP for some 0 < o < 1. Then it also
fails Lipschitz C-AIEP by Proposition 8.2. Hence by Theorem 5.2 we can find
a € M, e > 0 and metrically bounded sequences (x,,)52; and (y,)52; such that
(8.1) and (8.2) hold.

We may suppose by passing to further subsequences that the following limits

exist:
nlLIr;O d(zn,a) = 0za,
Jim_d(yn, a) = 0ya,
2, i, e, Tn) = Oos,
nlirréo n%gnoo d(Ym,Yn) = Oyy,
i ) = o
lim lm d(ym,xn) = dys-

Stability of M implies that 0,y = 0yz.
Since M has the Lipschitz C-AIEP it follows that either

(8.3) Ozz + Oyz < 0za + Oya

(8.4) Syy + Oay < Oua + Oya.
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Let us assume the former.
By (8.1) we have

(8.5) Ogq + 0y < 05y + 0y
We also note that since M also has Lipschitz co-AIEP we also have
(86) 59:9: S 51(17 5yy S 5ya~

Combining (8.5) and (8.3) and using the fact that 0 < o < 1 it is clear
that one of {Jzq,0ya} is greater than or equal to both d,, and &, and one is
less than or equal to both. From (8.6) it follows that we cannot have 0., <
min(dyq, 0y:) as this would imply that 0, = 6, and render (8.5) and (8.3)
impossible simultaneously. Hence

Sy < Min(dzg, 0ye) < Max(za, Oys) < dza-
But now by (8.6) we have

By stability this means that (8.4) also holds, which implies by similar reasoning
that we also have:

Oz < min(dyy, 0zy) < max(dyy, dzy) < dya-

Thus 63q = 62z = 0yz = dy, which is absurd. |

It is now possible to give an example to show that Naor’s problem has a
negative solution.

Example: There is a metric space M with the property that M has Lipschitz
C-IEP but M fails Lipschitz C-AIEP for every 0 < o < 1.

We defined M to be subset of Z? consisting of all pairs (m,n) with m € N
and n = 0,1 together with the origin (0,0). Let us define a metric on M by

d((m1,0), (m2,0)) =3 my # my,
d((m1,1), (me,1)) =2 my # ma,
d((mq,0),(me,1)) =3 mq < mao,
d((m1,0),(me,1)) =5 mq > ma,
d((0,0),(m,0)) =4 meN
d((0,0),(m,1)) =2 meN.
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We first need to verify that M has the Lipschitz C-IEP. Indeed if not we can
suppose the existence of a € M, € > 0 and sequences (2,)% 1, (Y )52, so that
(5.2) and (5.3 hold for A = 1). By passing to a subsequence we can suppose
that (0,0) is not in either sequence and the second co-ordinate of both sequences
is constant. We then have (taking into account the fact that all distances are
integers),

d(zp,a) +d(yn,a) + 1 < d(zp,x;) + d(yn, ;) j<n

and
d(l‘na a) + d(yna a) +1 < d(l‘nvyj) + d(yna yj) j <n.

It is then simple but tedious to check cases. If the second co-ordinate for both
sequences is 0 the right-hand sides tend to 6 as n — oo but the left-hand side
tends to a limit no less than 7. If the second co-ordinate is 1 for both sequences
the right-hand sides tend to 4 but the left-hand side tends to a limit no less than
5. If say the (x,)52, all have second co-ordinate 0 and the (y,)32; all have
second co-ordinate 1 the right-hand limits are 6 and 7. However the left-hand
limits are both at least 7. Thus M has the Lipschitz C-IEP.

Let us check however that for every 0 < a < 1, M® fails Lipschitz C-IEP.
Indeed let a = (0,0), z, = (n,0) and y,, = (n,1). Then

d(zn,a)* +d(yn,a)* =2“+4% neN
d(zp, )% + d(Yn, ;) =2.3% > 2 +4% j<n

and
Az, yi)* + d(Yn,y;)* =24+ 5% >244% j<n.
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